
M
r
H
D

A

K
M
B
R
G
O
C

1

(
w
s
C
w
e
r
w
s
m
i

h
R

Results in Control and Optimization 16 (2024) 100476 

A
2
(

Contents lists available at ScienceDirect

Results in Control and Optimization

journal homepage: www.elsevier.com/locate/rico

odeling environmental-born melioidosis dynamics with
ecurrence: An application of optimal control
abtamu Ayalew Engida
epartment of Applied Mathematics, Debre Markos University, Debre Markos, P.O. Box 269, Ethiopia

R T I C L E I N F O

eywords:
elioidosis model
.pseudomallei
ecurrent
lobal stability
ptimal control
ost-effective strategy

A B S T R A C T

Melioidosis is a significant health problem in tropical and subtropical regions, especially in
Southeast Asia and Northern Australia. Recurrent melioidosis is a major obstacle to eliminating
the disease from the community in these nations. This work aims to propose and analyze
a human melioidosis model with recurrent phenomena and an optimal control model by
incorporating time-dependent control functions. The basic reproduction number (𝑅0) of the
uncontrolled model is derived using the method of the next-generation matrix. Using the
construction of a Lyapunov functional, we present the global asymptotic dynamics of the
autonomous model in the presence of recurrent for both disease-free and endemic equilibria. The
global asymptotic stability of the model’s equilibria shows the absence of a backward bifurcation
for the model in both cases, whether in the absence or presence of relapse. The sensitivity
analysis aims to identify the parameters that have the most significant impact on the model’s
dynamics. Furthermore, qualitative analysis of the model’s global dynamics and the changing
effect of the most influential parameters on 𝑅0 are supported by numerical experiments, with the
results being illustrated graphically. The model with time-dependent controls is analyzed using
optimal control theory to assess the impact of various intervention strategies on the spread of
the epidemic. The numerical results of the optimality system are carried out using the Forward–
Backward Sweep method in Matlab. We also conducted a cost-effectiveness analysis using two
approaches: the average cost-effectiveness ratio and the incremental cost-effectiveness ratio.

. Introduction

Melioidosis is an infectious disease caused by the facultative intracellular gram-negative bacterium Burkholderia pseudomallei
B. pseudomallei). The environment (wet soil and surface water) is the natural reservoir of the pathogen in certain regions of the
orld where the disease is prevalent [1,2]. The organism is endemic in Southeast Asia and Northern Australia and is becoming a

ignificant emerging infection in other tropical and subtropical regions of the world, such as India, China, Sub-Saharan Africa, and
entral and South America [3,4]. Recent studies have estimated that there are about 165,000 human melioidosis cases annually
orldwide, with 89,000 (54%) fatalities [5,6]. Humans acquire B.pseudomallei infections through contact with a contaminated
nvironment (soil or water) via percutaneous inoculation, inhalation, or ingestion [7–9]. Human-to-human transmission has been
eported as extremely rare, with only a few suspected cases documented to date [10,11]. Melioidosis is a severe human infection,
hich can manifest as acute, chronic, or recurrent, with a mortality rate ranging from 10–50% [12,13]. Subsequent studies have

hown that the recurrence of the disease occurs from 5.7–25% in patients, depending on the geographical area. Recurrence of
elioidosis is commonly reported in endemic areas, and can be classified as either a relapse or a reinfection [14,15]. Relapse

nvolves the reappearance of B. pseudomallei infection with the same genotype as the original infection, accounting for 74–75% of
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all recurrences [16,17]. On the other hand, reinfection is the emergence of a new infection with a different genotype from that
of the original infection, and it ranges from 25–26% of all recurrences [18,19]. Patients with mild illness can be treated through
ntravenous antibiotics involving ceftazidime, imipenem, carbapenem, cefepime or meropenem [20,21]. In fact, B. pseudomallei
pecies are inherently resistant to multiple classes of antimicrobial agents [22,23]. Recent studies have reported that treatments
uch as trimethoprim–sulfamethoxazole (TMP–SMX) for 140 days, TMP–SMX plus doxycycline for more than 3 months, or TMP–
MX plus doxycycline plus chloramphenicol for more than 12 weeks are currently recommended to prevent severe and relapse
elioidosis [24–26].

Many fields including mathematical biology, epidemiology, engineering, and economics require applying applied mathematics
o describe various phenomena mathematically [27]. Specifically, mathematical modeling is a powerful tool for studying infectious
iseases. It helps to understand and predict disease spread, and optimize control interventions using optimal control theory. The
ptimal control theory is vital in designing better health measures for a specific mathematical model to control and eventually
liminate diseases [28–30].

A few deterministic mathematical models have been proposed in various forms to study the transmission dynamics of melioidosis
n the absence of optimal controls. In [31], the authors developed a melioidosis model under the assumption that the recovered
ndividuals either return to the latently infected (exposed) class (re-infection) or to the infectious class (relapse), but they considered
ne recovered class (without separating relapse and re-infection in their model). They showed the existence of backward bifurcation
n the presence of disease recurrence. They also considered both human-to-human and environment-to-human transmission paths
n the transmission dynamics of the diseases.

The authors in [32] presented a mathematical model of melioidosis dynamics with the assumption that the latently-infected
umans progress to either symptomatic class (infectious individuals that are showing symptoms) or to asymptomatic (infectious
ndividuals without symptoms). Meanwhile, the author in [33] proposed a deterministic model to achieve the effectiveness of two
ontrol measures on the transmission dynamics of melioidosis using optimal control theory. They considered a single transmission
ay, mass action incidence rate (homogeneous interaction) for interaction between susceptible humans and contaminated environ-
ent. Likewise, the authors in [34] recently investigated a non-autonomous melioidosis model by applying optimal control theory,

xpanding on the research started in [32].
The global asymptotic dynamics of the melioidosis model and the impact of optimal control measures in the presence of disease

ecurrence have not been explored in the existing literature. Other existing disease models that did not consider the recurrence
ocused solely on the local stability of the model’s steady states. Therefore, this crucial aspect is overlooked for environmental-born
elioidosis in the population. Also, the existing melioidosis model with recurrent cases experiences backward bifurcation in the
resence of disease recurrence [31]. In this work, we consider two distinct biological recurrences of melioidosis – relapse and re-
nfection – as separate classes. Thus, this study examines the global dynamic behavior of a robust melioidosis model in the presence of
elapse and re-infection based on applications of the Lyapunov stability approach and optimal control theory with cost-effectiveness
nalysis. Thus, we aim to answer the following: (i) what will be the sufficient condition for the disease elimination? (ii) Is it possible
o establish the absence of the phenomenon of backward bifurcation in the presence of reinfection and relapse? (iii) Is it possible
o establish a result for global asymptotic stability of the existing disease-free equilibrium point in the presence of reinfection and
elapse? (iv) what will be the sufficient condition for global asymptotic stability of the existing endemic equilibrium point in the
resence of reinfection and relapse? (v) what will be the most effective control measures for disease elimination? (vi) what will be
he most cost-effective strategy for disease control?

The rest of the paper is organized as follows: A compartmental model is formulated in Section 2. The basic qualitative properties
f the model (non-negativity and boundedness of solutions) and the existence and stability of equilibria are presented in Section 3.
ection 4 presents the sensitivity analysis of the basic reproduction number. The numerical simulations of the autonomous model are
resented in Section 5. The formulation, theoretical analysis, numerical simulations, and cost-effectiveness analysis of the optimal
ontrol problem are provided in Section 6. Concluding remarks and future directions are given in Section 7.

. Model formulation

The model proposed consists of human and the disease’s pathogen populations. Based on the disease’s epidemiological behaviors,
he total human population at any time 𝑡, denoted by 𝑁(𝑡), is divided into five distinct classes: susceptible 𝑆(𝑡), infected individuals
ut not infectious (exposed) 𝐸(𝑡), infectious individuals 𝐼(𝑡), pseudo-recovered individuals with possible reactivation of infection

(relapse) represented by 𝑅1(𝑡), and 𝑅2(𝑡) denotes recovered individuals with possibility of reinfection. Thus, 𝑁(𝑡) is given by

𝑁(𝑡) = 𝑆(𝑡) + 𝐸(𝑡) + 𝐼(𝑡) + 𝑅1(𝑡) + 𝑅2(𝑡). (2.1)

The pathogen population at time 𝑡 is represented as 𝑃 (𝑡). Susceptible individuals are assumed to be recruited at a constant rate of
𝛬. The susceptible class could acquire the disease through percutaneous inoculation, inhalation, and ingestion of the pathogen from
the contaminated environment at the rate

𝛷 = 𝛼𝑃
𝜅 + 𝑃

, (2.2)

nd progress to exposed class, where 𝛼 is transmission rate, 𝜅 is the constant pathogen concentration in the environment that
ields 50% chance of catching melioidiosis, and a nonlinear expression 𝑃

𝜅+𝑃 denotes the contact probability between humans and
ontaminated environment. Hence, the number of infections per unit of time is given by 𝛷𝑆. The individuals in 𝐼 move to either 𝑅2
ith probability 𝜏 or progress to 𝑅 with probability 1− 𝜏. After recovery from infection, an individual is not permanently immune
1
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Table 1
Descriptions and values of parameters of the model.

Parameter Description Value Unit Source

𝛬 Human recruitment rate 𝜇 ×𝑁0 Humans day−1 [31,32]
𝛼 Transmission rate 0.0185 Day−1 Assumed
𝜇 Natural death rate of humans 1

65×365
Day−1 [31]

𝜃 Progression rate of E to I 1
9

Day−1 [32,33]
𝛾 Recovery rate 0.0037 Day−1 [32,35]
𝛿 Disease-induced death rate 0.005 Day−1 [31,32]
𝜂1 Relapse rate of humans in 𝑅1 0.069 Day−1 Assumed
𝜂2 Reduction rate of infectivity in 𝑅2 0.035 Dimensionless Assumed
𝜎 Rate at which bacteria increase by I 0.13 No. of𝐵.𝑝𝑠𝑒𝑢𝑑𝑜𝑚𝑎𝑙𝑙𝑒𝑖cell

Humans day [33]
𝜇𝑏 Natural mortality rate of pathogens 0.02 Day−1 [32,33]
𝜅 Concentration of B. pseudomallei 5000 No. of B. pseudomallei cell Assumed

Fig. 1. Schematic diagram illustrating the dynamics of melioidosis with recurrence: The yellow bold arrow indicates the movement of individuals from one
compartment to the other, the blue dotted arrow represents the contribution of the infectious class to the pathogen class, and the red dotted segment indicates
the contribution to transmission. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

from B.pseudomallei, particularly due to recurrence (either relapse or reinfection). Thus, individuals in 𝑅2 class could acquire re-
infection at the rate 𝜂2𝛷 and move to the exposed class, where, 𝜂2 ∈ [0, 1] is the reduction in infectivity of 𝑅2. Also, it is assumed that
individuals in 𝑅1 class relapse at the rate 𝜂1. Furthermore, the natural mortality rates of humans and the pathogen are represented
by 𝜇 and 𝜇𝑏, respectively. The size of class 𝑃 grows in a contaminated environment due to the release of the pathogen from class
𝐼 at a rate of 𝜎.

Model’s parameter descriptions and values are explained in Table 1.
Based on the model descriptions above, the compartmental melioidosis model with recurrence is shown in Fig. 1.
According to Fig. 1, the melioidosis model takes the following system of non-linear ODEs:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑑𝑆
𝑑𝑡

= 𝛬 −
( 𝛼𝑃
𝜅 + 𝑃

+ 𝜇
)

𝑆,

𝑑𝐸
𝑑𝑡

= 𝛼𝑃
𝜅 + 𝑃

(

𝑆 + 𝜂2𝑅2

)

− (𝜃 + 𝜇)𝐸,

𝑑𝐼
𝑑𝑡

= 𝜃𝐸 + 𝜂1𝑅1 − (𝛾 + 𝛿 + 𝜇)𝐼,

𝑑𝑅1
𝑑𝑡

= (1 − 𝜏)𝛾𝐼 − (𝜂1 + 𝜇)𝑅1,

𝑑𝑅2
𝑑𝑡

= 𝜏𝛾𝐼 −
(

𝜇 + 𝜂2
𝛼𝑃

𝜅 + 𝑃

)

𝑅2,

𝑑𝑃
𝑑𝑡

= 𝜎𝐼 − 𝜇𝑏𝑃 ,

(2.3)

ith the initial conditions;

𝑆(0) ≥ 0 , 𝐸(0) ≥ 0 , 𝐼(0) ≥ 0 , 𝑅 (0) ≥ 0 , 𝑅 (0) ≥ 0 , and 𝑃 (0) ≥ 0.
1 2
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3. Model analysis

In this section, we qualitatively analyze the autonomous model (2.3).

.1. Basic properties of the model

.1.1. Non-negativity of the model solutions
For the model equation system (2.3) to be epidemiologically meaningful, it is crucial to demonstrate that all its state variables

emain non-negative over time 𝑡.

heorem 3.1. Let the set for the initial states be 𝑀0 =
(

𝑆(0), 𝐸(0), 𝐼(0), 𝑅1(0), 𝑅2(0), 𝑃 (0)
)

∈ 𝑅6
+ ∪ {0}. Then, the solutions

𝑆(𝑡), 𝐸(𝑡), 𝐼(𝑡), 𝑅1(𝑡), 𝑅2(𝑡), 𝑃 (𝑡)
}

of the model (2.3) are non-negative for all 𝑡 > 0.

roof. Let 𝑡𝑓 = sup
{

𝑡 > 0 ∶ 𝑆(𝑡0) > 0, 𝐸(𝑡0) > 0, 𝐼(𝑡0) > 0, 𝑅1(𝑡0) > 0, 𝑅2(𝑡0), 𝑃 (𝑡0) > 0,∀𝑡0 in [0, 𝑡]
}

. It follows that 𝑡𝑓 > 0. From the
st equation of the system (2.3) it follows that

𝑑𝑆
𝑑𝑡

+ (𝛷 + 𝜇)𝑆 = 𝛬, where, 𝛷 = 𝛼𝑃
𝜅 + 𝑃

. (3.1)

By applying the method of integrating factor on Eq. (3.1), we have

𝑑
𝑑𝑡

[

𝑆(𝑡)𝑒𝜇𝑡𝑓+∫
𝑡𝑓
0 𝛷(𝑢)𝑑𝑢

]

= 𝛬𝑒𝜇𝑡𝑓+∫
𝑡𝑓
0 𝛷(𝑢)𝑑𝑢. (3.2)

ntegrating both sides of Eq. (3.2) yields,

𝑆(𝑡𝑓 )𝑒
𝜇𝑡𝑓+∫

𝑡𝑓
0 𝛷(𝑢)𝑑𝑢 − 𝑆(0) = ∫

𝑡𝑓

0
𝛬
[

𝑒𝜇𝑣+∫
𝑣
0 𝛷(𝑢)𝑑𝑢

]

𝑑𝑣.

herefore,

𝑆(𝑡𝑓 ) = 𝑆(0)𝑒−𝜇𝑡𝑓−∫
𝑡𝑓
0 𝛷(𝑢)𝑑𝑢 +

[

𝑒−𝜇𝑡𝑓−∫
𝑡𝑓
0 𝛷(𝑢)𝑑𝑢

]

× ∫

𝑡𝑓

0

[

𝑒𝜇𝑣+∫
𝑣
0 𝛷(𝑢)𝑑𝑢𝛬

]

𝑑𝑣 ≥ 0.

lso from the 5th equation of the system (2.3) it follows that
𝑑𝑅2
𝑑𝑡

≥ −
(

𝜇 + 𝜂2
𝛼𝑃

𝜅 + 𝑃

)

𝑅2 ≥ −
(

𝜇 + 𝜂2𝛼
)

𝑅2, (3.3)

since the state variables and parameters are non-negative 𝑃
𝜅+𝑃 ≤ 1 ⇒

(

𝜇 + 𝜂2
𝛼𝑃
𝜅+𝑃

)

𝑅2 ≤
(

𝜇 + 𝜂2𝛼
)

𝑅2.
Thus, using integrating factor method and the comparison theorem given in [36] the inequality (3.3), yields

𝑅2(𝑡) ≥ 𝑅2(0)𝑒−(𝜇+𝜂2𝛼)𝑡 ≥ 0,∀𝑡 > 0.

In the same manner,

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝑑𝐸
𝑑𝑡

≥ −(𝜃 + 𝜇)𝐸, ⇒ 𝐸(𝑡) ≥ 𝐸(0)𝑒−(𝜃+𝜇)𝑡 ≥ 0,∀𝑡 > 0,

𝑑𝐼
𝑑𝑡

≥ −(𝛾 + 𝛿 + 𝜇)𝐼, ⇒ 𝐼(𝑡) ≥ 𝐼(0)𝑒−(𝛾+𝛿+𝜇)𝑡 ≥ 0,∀𝑡 > 0,

𝑑𝑅1
𝑑𝑡

≥ −(𝜂1 + 𝜇)𝑅1, ⇒ 𝑅1(𝑡) ≥ 𝑅1(0)𝑒−(𝜂1+𝜇)𝑡 ≥ 0,∀𝑡 > 0,

𝑑𝑃
𝑑𝑡

≥ −𝜇𝑏𝑃 , ⇒ 𝑃 (𝑡) ≥ 𝑃 (0)𝑒−𝜇𝑏𝑡 ≥ 0,∀𝑡 > 0.

Hence, the solutions of (2.3) with non-negative initial conditions 𝑀0 ∈ 𝑅6
+ ∪ {0} remain non-negative for all 𝑡 > 0.□

3.1.2. Boundedness of the model solutions

Lemma 3.2. The closed set 𝐷1 given by 𝐷1 = {(𝑆,𝐸, 𝐼, 𝑅1, 𝑅2, 𝑃 ) ∈ 𝑅6
+ ∶ 0 ≤ 𝑁(𝑡) ≤ 𝛬

𝜇 , 0 ≤ 𝑃 (𝑡) ≤ 𝜎𝛬
𝜇𝜇𝑏

}, is positively invariant and
attracts every positive solution of the model.

Proof. Adding all the first five equations of the system (2.3), yields
𝑑𝑁(𝑡)
𝑑𝑡

= 𝛬 − 𝜇𝑁(𝑡) − 𝛿𝐼(𝑡). (3.4)

ince 𝛿 and 𝐼 are non-negative, from Eq. (3.4), it follows that
𝑑𝑁(𝑡) ≤ 𝛬 − 𝜇𝑁(𝑡), or 𝑑𝑁(𝑡)

+ 𝜇𝑁(𝑡) ≤ 𝛬, ∀𝑡 ≥ 0. (3.5)

𝑑𝑡 𝑑𝑡

4 
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Applying the integrating factor method and the comparison theorem [36]to Eq. (3.5), gives

𝑁(𝑡) ≤ 𝛬
𝜇

+
(

𝑁(0) − 𝛬
𝜇

)

𝑒−𝜇𝑡. (3.6)

hus, 0 ≤ lim𝑡→∞ sup𝑁(𝑡) ≤ 𝛬
𝜇 . In particular, if 𝑁(0) ≤ 𝛬

𝜇 , then 𝑁(𝑡) ≤ 𝛬
𝜇 , ∀𝑡 > 0. Furthermore, if 𝑁(0) > 𝛬

𝜇 , then either the
solution enters the region 𝐷1 in finite time or 𝑁(𝑡) ⟶ 𝛬

𝜇 asymptotically as 𝑡 → ∞.
Lastly, using the last equation of (2.3), and the Eqs. (2.1) and (3.6), we obtain

𝑃 (𝑡) ≤ 𝜎𝛬
𝜇𝑏𝜇

+
(

𝑃 (0) − 𝜎𝛬
𝜇𝑏𝜇

)

𝑒−𝜇𝑏𝑡, ∀𝑡 > 0.

This implies that

0 ≤ lim
𝑡→∞

sup𝑃 (𝑡) ≤ 𝜎𝛬
𝜇𝑏𝜇

.

Therefore, 0 ≤ 𝑃 (𝑡) ≤ 𝜎𝛬
𝜇𝑏𝜇

whenever, 0 ≤ 𝑃 (0) ≤ 𝜎𝛬
𝜇𝑏𝜇

,∀𝑡 > 0. Similarly, 𝑃 (𝑡) ⟶ 𝜎𝛬
𝜇𝑏𝜇

asymptotically as 𝑡 → ∞. Consequently, the region
𝐷1 ⊂ 𝑅6

+ is positively invariant and attracts all solutions of the system (2.3), it suffices to analyze the model in this region [37]. □

3.2. Stability analysis of model’s equilibria

3.2.1. The disease-free equilibrium and basic reproduction number of the model
The disease-free equilibrium (DFE) of the model (2.3), denoted by 𝐸∗

0 , is given by

𝐸∗
0 =

(

𝑆∗
0 , 0, 0, 0, 0, 0

)

=
(

𝛬
𝜇
, 0, 0, 0, 0, 0

)

. (3.7)

pplying the next-gen matrix approach given in [38] to system (2.3), yields the basic reproduction number (𝑅0) of the model as
ollows: The transfer matrices are given as:

𝐹 =

⎛

⎜

⎜

⎜

⎜

⎝

0 0 0 𝛼𝛬
𝜅𝜇

0 0 0 0
0 0 0 0
0 0 0 0

⎞

⎟

⎟

⎟

⎟

⎠

, 𝑉 =

⎛

⎜

⎜

⎜

⎜

⎝

𝜖1 0 0 0
−𝜃 𝜖2 −𝜂1 0
0 −(1 − 𝜏)𝛾 𝜖3 0
0 −𝜎 0 𝜇𝑏

⎤

⎥

⎥

⎥

⎥

⎦

,

where, 𝜖1 = 𝜃 + 𝜇, 𝜖2 = 𝛿 + 𝛾 + 𝜇, 𝜖3 = 𝜂1 + 𝜇. Thus, 𝑅0 of the model (2.3) is given by

𝑅0 = 𝜌(𝐹𝑉 −1) =
𝛬𝛼𝜃𝜎𝜖3

𝜅𝜇𝜇𝑏𝜖1
(

𝜇𝜖2 + 𝜂1(𝛿 + 𝜇 + 𝜏𝛾)
) . (3.8)

3.2.2. Local stability of the DFE of the model
In accordance with Theorem 2 in [38], the result of the local stability of 𝐸∗

0 is provided as follows.

Theorem 3.3. The DFE, 𝐸∗
0 , given in Eq. (3.7) is locally asymptotically stable if 𝑅0 < 1 and unstable if 𝑅0 > 1.

Biologically, Theorem 3.3 implies that melioidosis infection will eventually diminish in the population if 𝑅0 < 1 and if the initial
population sizes of the sub-classes (2.3) are within the basin of attraction of 𝐸∗

0 . Hence, individuals in the infected population do
not acquire additional infections.

3.2.3. Existence of endemic equilibrium of the model
Let an endemic equilibrium of the system (2.3) be denoted by 𝐸∗

𝑒 =
(

𝑆∗, 𝐸∗, 𝐼∗, 𝑅∗
1 , 𝑅

∗
2 , 𝑃

∗). Then the components of 𝐸∗
𝑒 satisfy

the following system:

⎧

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎩

𝛬 − (𝛷∗ + 𝜇)𝑆∗ = 0,

𝛷∗(𝑆∗ + 𝜂2𝑅
∗
2) − 𝜖1𝐸

∗ = 0,

𝜃𝐸∗ + 𝜂1𝑅
∗
1 − 𝜖2𝐼

∗ = 0,

(1 − 𝜏)𝛾𝐼∗ − 𝜖3𝑅
∗
1 = 0,

𝜏𝛾𝐼∗ − (𝜇 + 𝜂2𝛷
∗)𝑅∗

2 = 0,

𝜎𝐼∗ − 𝜇𝑏𝑃
∗ = 0,

(3.9)

where, 𝛷∗ = 𝛼𝑃 ∗

𝜅+𝑃 ∗ is the force of infection at the endemic equilibrium. Solving Eq. (2.2) at the endemic equilibrium, for 𝑃 ∗, yields

𝑃 ∗ = 𝜅𝛷∗
. (3.10)
𝛼 −𝛷∗
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At 𝐸∗
𝑒 , 𝑃 ∗ > 0 and 𝑃 ∗

𝜅+𝑃 ∗ < 1, thus 𝛼 −𝛷∗ = 𝛼
(

1 − 𝑃 ∗

𝜅+𝑃 ∗

)

> 0. Substituting (3.10) into the last equation of the system (3.9), gives

𝐼∗ =
𝜅𝜇𝑏𝛷∗

𝜎(𝛼 −𝛷∗)
> 0, for 𝛷∗ > 0. (3.11)

y combining Eq. (3.11) with the fourth and fifth equations of system (3.9), we obtain

⎧

⎪

⎪

⎨

⎪

⎪

⎩

𝑅∗
1 =

𝜅𝜇𝑏(1 − 𝜏)𝛾𝛷∗

𝜖3𝜎(𝛼 −𝛷∗)
,

𝑅∗
2 =

𝜅𝜇𝑏𝜏𝛾𝛷∗

𝜎(𝛼 −𝛷∗)
(

𝜇 + 𝜂2𝛷∗
) .

(3.12)

Combining Eq. (3.11), the third equation of (3.9) and the first equation of (3.12), gives

𝐸∗ =
𝜅𝜇𝑏

(

𝜇𝜖2 + 𝜂1(𝛿 + 𝜇 + 𝜏𝛾)
)

𝛷∗

𝜃𝜖3𝜎(𝛼 −𝛷∗)
. (3.13)

Again, solving the first equation of (3.9) for 𝑆∗, yields

𝑆∗ = 𝛬
𝛷∗ + 𝜇

. (3.14)

Lastly, substituting the Eqs. (3.14), (3.13) and the second equation of (3.12) into the second equation of the system (3.9), and
solving for 𝛷∗, we obtain a third degree equation in 𝛷∗, given as follows

𝑃3(𝛷∗) = 𝛷∗𝑃2(𝛷∗) = 0, where , 𝑃2(𝛷∗) = 𝐴2(𝛷∗)2 + 𝐴1𝛷
∗ + 𝐴0. (3.15)

ence, 𝐸∗
𝑒 of the melioidosis model (2.3) satisfy the quadratic equation in 𝛷∗ given by

𝑃2(𝛷∗) = 𝐴2(𝛷∗)2 + 𝐴1𝛷
∗ + 𝐴0 = 0, (3.16)

where,

𝐴0 = 𝜅𝜇2𝜇𝑏𝜖1
(

𝜇𝜖2 + 𝜂1(𝛿 + 𝜇 + 𝜏𝛾)
)

(𝑅0 − 1), (𝐴0 > 0 if 𝑅0 > 1, 𝐴0 = 0 if 𝑅0 = 1, and 𝐴0 < 0 if 𝑅0 < 1),

𝐴2 = −𝜂2
[

𝛬𝜃𝜎𝜖3 + 𝜅𝜇𝑏
(

(1 − 𝜏)𝜇𝜃𝛾 + (𝜇𝜃 + 𝜂1𝜖1)(𝜇 + 𝛿) + 𝜇(𝜇𝜂2 + 𝜏𝛾𝜂1)
)]

< 0, (always)

𝐴1 = 𝜅𝜇𝜇𝑏𝜖1
(

𝜇𝜖2 + 𝜂1(𝛿 + 𝜇 + 𝜏𝛾)
)

(𝑅0 − 1) − 𝛬𝜃𝜎𝜖3𝜇 + 𝜅𝜇𝜇𝑏
[

𝜏𝛾𝜃𝜖3𝜂2 − 𝜖1
(

𝜇𝜖2 + 𝜂1(𝛿 + 𝜇 + 𝜏𝛾)
)]

. (3.17)

From Eq. (3.17) the expression

𝜅𝜇𝜇𝑏𝜖1
(

𝜇𝜖2 + 𝜂1(𝛿 + 𝜇 + 𝜏𝛾)
)

(𝑅0 − 1) − 𝛬𝜃𝜎𝜖3𝜇 < 0, for 𝑅0 ≤ 1. (3.18)

Also, 𝜏𝛾𝜃𝜖3𝜂2 − 𝜖1
(

𝜇𝜖2 + 𝜂1(𝛿 + 𝜇 + 𝜏𝛾)
)

≤ 𝜏𝛾𝜃𝜖3 − 𝜖1
(

𝜇𝜖2 + 𝜂1(𝛿 + 𝜇 + 𝜏𝛾)
)

(∵𝜏𝛾𝜃𝜖3𝜂2 ≤ 𝜏𝛾𝜃𝜖3, for 0 ≤ 𝜂2 ≤ 1).

But, 𝜅𝜇𝜇𝑏
[

𝜏𝛾𝜃𝜖3 − 𝜖1
(

𝜇𝜖2 + 𝜂1(𝛿 + 𝜇 + 𝜏𝛾)
)]

= −𝜅𝜇𝜇𝑏
(

(1 − 𝜏)𝜇𝜃𝛾 + (𝜇𝜃 + 𝜂1𝜖1)(𝜇 + 𝛿) + 𝜇(𝜇𝜂2 + 𝜏𝛾𝜂1)
)

< 0. Thus,

𝜅𝜇𝜇𝑏
[

𝜏𝛾𝜃𝜖3𝜂2 − 𝜖1
(

𝜇𝜖2 + 𝜂1(𝛿 + 𝜇 + 𝜏𝛾)
)]

< 0. (3.19)

Therefore, from the Eqs. (3.18) and (3.19), we get 𝐴1 < 0, for 𝑅0 ≤ 1.
The existence of the disease persistence equilibrium of the model (2.3) depends on the roots of the quadratic Eq. (3.16). All three

oefficients of 𝑃2(𝛷∗) are negative for 𝑅0 < 1. Since the discriminant 𝐴2
1 − 4𝐴0𝐴2 ≠ 0 for 𝑅0 < 1, equation in (3.16) has two distinct

on-zero roots, say, 𝑟1 and 𝑟2. These roots satisfy the following conditions: 𝑟1𝑟2 =
𝐴0
𝐴2

> 0 and 𝑟1 + 𝑟2 = −𝐴1
𝐴2

< 0. Thus, the two roots
have negative signs, which are not feasible (biologically insignificant) when 𝑅0 < 1. Moreover, 𝛷∗ = −𝐴1

𝐴2
< 0 is the only root of

𝑃2(𝛷∗) at 𝑅0 = 1. As a result, the model has no positive force of infection (feasible solution) for 𝑅0 ≤ 1. Consequently, the model
system (2.3) has no positive endemic equilibrium for 𝑅0 ≤ 1. On the other hand, the coefficient 𝐴0 > 0 for 𝑅0 > 1. In this case, the
discriminant, 𝐴2

1 − 4𝐴0𝐴2 > 0. It follows that, 𝑃2(𝛷∗) has two different non-zero real roots for 𝑅0 > 1, that satisfying 𝑟1𝑟2 =
𝐴0
𝐴2

< 0.
This indicates that 𝑟1 and 𝑟2 have opposite sings. Hence, the model has a unique positive endemic equilibrium for 𝑅0 > 1 in the
resence of relapse and re-infection. Furthermore, if 𝜂2 = 0 (in the absence of relapse), the quadratic equation 𝑃2(𝛷∗) = 0 in (3.16)
educes into a linear equation 𝐴∗

1𝛷
∗ +𝐴0 = 0 and it has unique solution 𝛷∗ = −𝐴0

𝐴∗
1
> 0 if 𝑅0 > 1, and 𝛷∗ = −𝐴0

𝐴∗
1
< 0 if 𝑅0 < 1, where

𝐴∗
1 = −𝜇

[

𝛬𝜃𝜎𝜖3+𝜅𝜇𝑏𝜖1
(

𝜇𝜖2+𝜂1(𝛿+𝜇+ 𝜏𝛾)
)]

< 0. Therefore, model (2.3) has a unique endemic equilibrium 𝐸∗
𝑒 for 𝑅0 > 1 and lacks

any positive endemic equilibrium for 𝑅0 ≤ 1. This result indicates the absence of a backward bifurcation in both scenarios, with
and without recurrent cases (relapse and re-infection). Unlike the model proposed in this study, other compartmental models with
recurrent cases experience backward bifurcation. From an epidemiological standpoint, eliminating the disease in the population is
possible when 𝑅0 ≤ 1, while the disease infection will endure within the population if 𝑅0 > 1. The results can be summarized by
the following theorem.
6 



H.A. Engida

f

s

a
𝑞
s

L

F

F
i

Results in Control and Optimization 16 (2024) 100476 
Theorem 3.4 (Existence of the Endemic Equilibrium). The model (2.3)
(i) has precisely one unique endemic equilibrium in the presence and absence of recurrent when 𝑅0 > 1,
(ii) has no positive endemic equilibrium (in the presence and absence of recurrent) if 𝑅0 ≤ 1.

3.2.4. Global stability of the DFE of the model
We use the direct Lyapunov approach given in [39] to prove the global asymptotic stability of 𝐸∗

0 . This necessitates a scalar
unction 𝛱0(𝜉), 𝜉 ∈ 𝑅6, defined on an open set 𝑈0 that includes 𝐸∗

0 and satisfies the following criteria.

(i) 𝛱0(𝐸∗
0 ) = 0,

(ii) 𝛱0(𝜉) > 0, for all 𝜉 ∈ 𝑈0 ⧵ 𝐸0,
(iii) 𝑑𝛱0

𝑑𝑡 < 0, for all 𝜉 ∈ 𝑈0 ⧵ 𝐸∗
0 and 𝑑𝛱0

𝑑𝑡 = 0 at 𝐸∗
0 .

The global asymptotic stability of 𝐸∗
0 is established as follows.

Theorem 3.5. The DFE, 𝐸∗
0 , given by (3.7) is globally asymptotically stable (GAS) if 𝑅0 ≤ 1.

Proof. If 𝑅0 < 1, a unique locally asymptotically stable DFE exists according to Theorem 3.3. Consider the following a Lyapunov
function

𝛱0 =
𝜃
𝜖1

𝐸 + 𝐼 +
𝜂1
𝜖3

𝑅1 +
𝛬𝛼𝜃

𝜅𝜇𝑏𝜇𝜂1
𝑃 .

The time derivative of 𝛱0 along the model’s solutions is provided as:

𝛱 ′
0 =

𝜃
𝜖1

𝐸′ + 𝐼 ′ +
𝜂1
𝜖3

𝑅′
1 +

𝛬𝛼𝜃
𝜅𝜇𝑏𝜇𝜂1

𝑃 ′

= 𝜃
𝜖1

(

𝛷(𝑆 + 𝜂2𝑅2) − 𝜖1𝐸
)

+ 𝜃𝐸 + 𝜂1𝑅1 − 𝜖2𝐼 +
𝜂1
𝜖3

(

(1 − 𝜏)𝛾𝐼 − 𝜖3𝑅1

)

+ 𝛬𝛼𝜃
𝜅𝜇𝑏𝜇𝜂1

(

𝜎𝐼 − 𝜇𝑏𝑃
)

=
( 𝛼𝜃𝑃
(𝜅 + 𝑃 )𝜖1

𝑆 − 𝛬𝛼𝜃𝑃
𝜅𝜇𝜂1

)

+
𝜂2𝛼𝜃𝑃

(𝜅 + 𝑃 )𝜖1
𝑅2 +

𝛬𝛼𝜃𝜎𝐼
𝜅𝜇𝑏𝜇𝜖1

−

(

𝜇𝜖2 + 𝜂1(𝛿 + 𝜇 + 𝜏𝛾)
)

𝜖3
𝐼

= 𝛼𝜃𝑃
𝜅𝜖1

( 𝜅
𝜅 + 𝑃

𝑆 +
𝜂2𝜅
𝜅 + 𝑃

𝑅2 −
𝛬
𝜇

)

+
𝛬𝛼𝜃𝜎𝜖3 − 𝜅𝜇𝑏𝜇𝜖1

(

𝜇𝜖2 + 𝜂1(𝛿 + 𝜇 + 𝜏𝛾)
)

𝜅𝜇𝑏𝜇𝜖1𝜖3
𝐼

= 𝛼𝜃𝑃
𝜅𝜖1

( 𝜅
𝜅 + 𝑃

𝑆 + 𝜅
𝜅 + 𝑃

𝜂2𝑅2 −
𝛬
𝜇

)

+

(

𝜇𝜖2 + 𝜂1(𝛿 + 𝜇 + 𝜏𝛾)
)

𝜖3
(𝑅0 − 1)𝐼

= 𝛼𝜃𝑃
𝜅𝜖1

( 𝜅
𝜅 + 𝑃

(𝑆 + 𝜂2𝑅2) −
𝛬
𝜇

)

+

(

𝜇𝜖2 + 𝜂1(𝛿 + 𝜇 + 𝜏𝛾)
)

𝜖3
(𝑅0 − 1)𝐼,

(3.20)

ince the state variables are non-negative, and 𝜅 < 𝜅 + 𝑃 (or 𝜅
𝜅+𝑃 < 1), 𝜂2𝑅2 ≤ 𝑅2 for 0 ≤ 𝜂2 ≤ 1), we obtained, 𝛱 ′

0(𝑡) <

𝛼𝜃𝑃
𝜅𝜖1

(

(𝑆 + 𝑅2) −
𝛬
𝜇

)

+

(

𝜇𝜖2+𝜂1(𝛿+𝜇+𝜏𝛾)
)

𝜖3
(𝑅0 − 1)𝐼 .

Note that 𝑆 +𝑅2 < 𝑁 ≤ 𝛬
𝜇 in 𝑈0 ⧵𝐸0. As the model parameters are non-negative, 𝛱 ′

0(𝑡) < 0 in 𝑈0 ⧵𝐸0 and provided that 𝑅0 ≤ 1,
and 𝛱 ′

0 = 0 if and only if 𝐸 = 𝐼 = 𝑅1 = 𝑃 = 0 (or at 𝐸∗
0 ). Thus, according to Lasalle’s Invariance Principle [39],

(

𝐸(𝑡), 𝐼(𝑡), 𝑅1(𝑡), 𝑃 (𝑡)
)

→ (0, 0, 0, 0) as 𝑡 → ∞. (3.21)

From (3.21), it follows that, lim𝑡→∞ sup𝐸(𝑡) = 0, lim𝑡→∞ sup𝐼(𝑡) = 0, lim𝑡→∞ sup𝑅1(𝑡) = 0 and lim𝑡→∞ sup𝑃 (𝑡) = 0. Using the
pproach given in [40,41], for sufficient small number 𝜖0, there exist constants 𝑞1, 𝑞2, 𝑞3 and 𝑞4 such that lim𝑡→∞ sup𝐸(𝑡) ≤ 𝜖0 ∀𝑡 >
1, lim𝑡→∞ sup𝐼(𝑡) ≤ 𝜖0 ∀𝑡 > 𝑞2, lim𝑡→∞ sup𝑅1(𝑡) ≤ 𝜖0 ∀𝑡 > 𝑞3, and lim𝑡→∞ sup𝑃 (𝑡) ≤ 𝜖0 ∀𝑡 > 𝑞4. Thus, from the fifth equation of the
ystem (2.3), for 𝑡 > max{𝑞1, 𝑞2, 𝑞3, 𝑞4}, we have

𝑅′
2(𝑡) ≤ 𝜏𝛾𝜖0 − 𝜇𝑅2. As a result, by comparison theorem in [42],

𝑅∞
2 = lim

𝑡→∞
sup𝑅2(𝑡) ≤

𝜏𝛾𝜖0
𝜇

. (3.22)

etting, 𝜖0 → 0 in (3.22), gives

𝑅∞
2 = lim

𝑡→∞
sup𝑅2(𝑡) ≤ 0. (3.23)

urthermore, by using lim𝑡→∞ inf𝐸(𝑡) = 0, lim𝑡→∞ inf𝐼(𝑡) = 0, lim𝑡→∞ inf𝑅1(𝑡) = 0, and lim𝑡→∞ inf𝑃 (𝑡) = 0, one can verify that

𝑅2∞ = lim
𝑡→∞

inf𝑅2(𝑡) ≥ 0. (3.24)

rom (3.23) and (3.24) it follows that, 𝑅∞
2 ≤ 0 ≤ 𝑅2∞. Therefore, 𝑅2(𝑡) → 0, regardless of the initial population size 𝑅2(0). Likewise,

𝛬 as 𝑡 → ∞.
t can be shown that 𝑆(𝑡) → 𝜇

7 
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As a result, every solution trajectory of the system (2.3), with the initial population size in 𝐷1 converges to 𝐸∗
0 as 𝑡 → ∞ when

𝑅0 ≤ 1. Biologically this implies that the susceptible individuals do not acquire additional infections when 𝑅0 ≤ 1. Therefore, in this
ase, the infection can be eradicated from the population over time. □

.2.5. Global stability of the endemic equilibrium of the model
For 𝑅0 > 1, there is a single positive endemic equilibrium, 𝐸∗

𝑒 , for the model (2.3) as stated in Theorem 3.4. The next result
ddresses the global asymptotic stability of 𝐸∗

𝑒 by using a suitable chosen Lyapunov function.

Theorem 3.6. For 𝑅0 > 1, the endemic equilibrium, 𝐸∗
𝑒 of the model (2.3) is GAS in 𝐷1 ⧵ 𝐷0, 𝐷0 =

{

(𝑆,𝐸, 𝐼, 𝑅1, 𝑅1, 𝑃 ) ∶

𝐸 = 𝐼 = 𝑅1 = 𝑃 = 0
}

.

Proof. Consider the following candidate for a Lyapunov function: 𝛱1(𝑆,𝐸, 𝐼, 𝑅1, 𝑅1, 𝑃 ) =
1
2

(

(𝑆 − 𝑆∗) + (𝐸 − 𝐸∗) + (𝐼 − 𝐼∗) + (𝑅1 −

𝑅∗
1) + (𝑅2 − 𝑅∗

2)
)2

+ 1
2 (𝑃 − 𝑃 ∗)2, with its time derivative

𝛱 ′
1(𝑡) =

(

(𝑆 + 𝐸 + 𝐼 + 𝑅1 + 𝑅2) − (𝑆∗ + 𝐸∗ + 𝐼∗ + 𝑅∗
1 + 𝑅∗

2)
)(

𝑆′(𝑡) + 𝐸′(𝑡) + 𝐼 ′(𝑡) + 𝑅′
1(𝑡) + 𝑅′

2(𝑡)
)

+ (𝑃 − 𝑃 ∗)(𝑃 ′(𝑡)).
(3.25)

dding the first five equations of the system (3.9), we obtain
𝛬
𝜇

− 𝛿
𝜇
𝐼∗ = 𝑆∗ + 𝐸∗ + 𝐼∗ + 𝑅∗

1 + 𝑅∗
2 . (3.26)

lso, from the last equation of the system (3.9), we have

𝑃 ∗ = 𝜎
𝜇𝑏

𝐼∗ ≤ 𝜎
𝜇𝑏

(𝑆∗ + 𝐸∗ + 𝐼∗ + 𝑅∗
1 + 𝑅∗

2). (3.27)

ote that 𝑁(𝑡) ≤ 𝛬
𝜇 in 𝐷1. Because the model parameters and variables of infective classes are non-negative, combining Eqs. (2.1),

(2.3), (3.4) (3.25), (3.26), and (3.27), yields

𝛱 ′
1(𝑡) =

(

𝑁(𝑡) − (𝛬
𝜇

− 𝛿
𝜇
𝐼∗)

)(

𝛬 − 𝜇𝑁(𝑡) − 𝛿𝐼(𝑡)
)

+
(

𝑃 (𝑡) − 𝜎
𝜇𝑏

𝐼∗
)(

𝜎𝐼 − 𝜇𝑏𝑃 (𝑡)
)

= −
(𝛬
𝜇

− 𝛿
𝜇
𝐼∗ −𝑁(𝑡)

)(

𝛬 − 𝜇𝑁(𝑡) − 𝛿𝐼(𝑡)
)

−
( 𝜎
𝜇𝑏

𝐼∗ − 𝑃 (𝑡)
)(

𝜎𝐼 − 𝜇𝑏𝑃 (𝑡)
)

< −
(𝛬
𝜇

−𝑁(𝑡)
)(

𝛬 − 𝜇𝑁(𝑡)
)

−
( 𝜎
𝜇𝑏

(𝑆∗ + 𝐸∗ + 𝐼∗ + 𝑅∗
1 + 𝑅∗

2) − 𝑃 (𝑡)
)(

𝜎𝐼 − 𝜇𝑏𝑃 (𝑡)
)

< −
(𝛬
𝜇

−𝑁(𝑡)
)(

𝛬 − 𝜇𝑁(𝑡)
)

−
( 𝜎
𝜇𝑏

(𝛬
𝜇

− 𝛿
𝜇
𝐼∗) − 𝑃 (𝑡)

)(

𝜎𝐼 − 𝜇𝑏𝑃 (𝑡)
)

< −𝜇
(𝛬
𝜇

−𝑁(𝑡)
)(𝛬

𝜇
−𝑁(𝑡)

)

− 𝜇𝑏
( 𝜎
𝜇𝑏

𝛬
𝜇

− 𝑃 (𝑡)
)( 𝜎

𝜇𝑏
𝐼 − 𝑃 (𝑡)

)

< −𝜇
(𝛬
𝜇

−𝑁(𝑡)
)(𝛬

𝜇
−𝑁(𝑡)

)

−
( 𝛬𝜎
𝜇𝜇𝑏

− 𝑃 (𝑡)
)( 𝛬𝜎

𝜇𝜇𝑏
− 𝑃 (𝑡)

)

(∵𝐼 < 𝛬
𝜇

in 𝐷1)

< −
[

𝜇
(𝛬
𝜇

−𝑁(𝑡)
)2

+ 𝜇𝑏
( 𝛬𝜎
𝜇𝜇𝑏

− 𝑃 (𝑡)
)2]

< 0.

Thus, 𝛱 ′
1(𝑡) < 0 in 𝐷1 ⧵ 𝐷0 when 𝑅0 > 1. Since 𝛱1 is a well-defined candidate for the Lyapunov function in 𝐷1 and according to

Lasalle’s Invariance Principle [39], we conclude that 𝐸∗
𝑒 is GAS when 𝑅0 > 1. This result indicates that every trajectory of the model

(2.3) solutions with initial population sizes in 𝐷1 ⧵ 𝐷0, eventually moves towards the respective unique endemic equilibrium, 𝐸∗
𝑒 ,

of the model 𝑡 → ∞ for 𝑅0 > 1. In biological terms, the melioidosis infection will endure within the population.□

4. Sensitivity analysis

In this section, we perform sensitivity analysis using a normalized forward sensitivity index to identify parameters with high
influence on 𝑅0. This assists in suggesting appropriate control strategies for mitigating the spread of the disease. We utilize the
approach given in [43,44]. The forward sensitivity index of 𝑅0 with respect to a particular parameter 𝜑 is provided by

𝛶𝑅0
𝜑 =

𝜕𝑅0
𝜕𝜑

×
𝜑
𝑅0

. (4.1)

y using Eq. (4.1), the sensitivity index of parameters of 𝑅0 is computed and presented in Table 2, ranking from the most influential
arameter to the least. The parameter values from Table 1 are used.

Based on the Table 2 and Fig. 2, the parameters 𝛼, 𝜎, 𝛬, 𝜃 and 𝜂1 have positive sensitivity index values, indicating a direct influence
f the parameters on the magnitude of 𝑅0. In contrast, 𝜇𝑏, 𝜅, 𝜇, 𝛿, 𝛾 have negative 𝛶𝑅0

𝜑 values, showing a reverse impact of the
arameters on 𝑅0. Also, we observed that 𝛼, 𝜎, 𝜇𝑏, 𝜅 are the most influencing parameters on 𝑅0 (directly or indirectly), as confirmed

n Fig. 2 and Table 2. For example, reducing the value of 𝛼 or 𝜎 by 𝜍% would also reduce the value of 𝑅0 by the same percentage 𝜍%.

8 
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Table 2
Sensitivity indices for parameters of 𝑅0.

Parameter Value Sensitivity index

𝛼 0.0185 1.0000
𝜎 0.13 1.0000
𝜇𝑏 0.02 −1.0000
𝜅 5000 −1.0000
𝛬 𝜇 ×𝑁0 1.0000
𝜇 1

65×365
−1.0077

𝛿 0.005 −0.8325
𝛾 0.0037 −0.1605
𝜃 1

9
0.0004

𝜂1 0.069 0.0003

Fig. 2. Plot shows sensitivity indices for each parameter of 𝑅0.

Fig. 3. Graphical results showing the impact of the most influencing parameters on 𝑅0; (a) 𝑅0 vs 𝛼 and 𝜎, (b) 𝑅0 vs 𝛼 and 𝜇𝑏, and (c) 𝑅0 vs 𝜎 and 𝜇𝑏. The
parameter values given in Table 1 are used.

On the contrary, increasing the value of 𝜇𝑏 or 𝜅 by 15% would decrease 𝑅0 by 13.04632%. Furthermore, the numerical illustration
of the changing effects of parameters 𝛼, 𝜎 and 𝜇𝑏 on 𝑅0 can be seen in surface and contour plots refer, Figs. 3 and 4. From Figs. 3(a)
– 3(b) and Figs. 4(a) – 4(b), it is evident that increasing the value of 𝛼, will lead to the endemic condition. A similar observation
can be made for the varying impact of 𝛼 from the plots. On the other hand, 𝑅0 decreases as the pathogen’s mortality rate increases,
as depicted in Figs. 3(b) – 3(c) and Figs. 4(b) – 4(c). In view of the results of sensitivity analysis, control strategies for 𝛼 and 𝜎
will sufficiently reduce the spread of melioidosis. Moreover, a strategy that increases the mortality rate of B. pseudomallei, will be
effective in controlling environment-born melioidosis with recurrent. Consequently, the control efforts could be employed through
prevention measures and treatment for classes of 𝐼 and 𝑅1 to mitigate the disease spread within the population for this specific
study.
9 
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Fig. 4. Graphical results showing contour plots of 𝑅0 in (a) 𝛼𝜎 plane, (b) 𝛼𝜇𝑏 plane, and (c) 𝜎𝜇𝑏 plane.

. Numerical stability analysis of the equilibria of the model

In this section, we present numerical results for the global dynamics of the autonomous model (2.3) to support the qualitative
nalysis of the model. We use the 𝑜𝑑𝑒45 algorithm in MATLAB to accomplish this. The model parameters used for simulations are
rovided in Table 1, and the initial population sizes are set as:

𝑀∗
0 =

(

𝑆(0), 𝐸(0), 𝐼(0), (0), 𝑅1(0), 𝑅2(0), 𝑃 (0)
)

= (450, 50, 20, 10, 5, 200). (5.1)

So, using the explicit formula in (3.8), the basic reproduction number is found as 𝑅0 ≈ 2.1416. Using Eqs. (3.10)–(3.14) and
(3.16) the unique positive disease presence equilibrium of the model is obtained as,

𝐸∗
𝑒 =

(

248.9221, 0.1092, 2.0195, 0.0801, 44.3091, 13.1266
)

for the unique positive value, 𝛷 ≈ 4.844118684001455 × 10−5. In this
instance, each model solution trajectory moves towards the equilibrium point 𝐸∗

𝑒 over time, as shown in Figs. 6(𝑎) – 6(d). This result
suggests that all infected classes persist in the population. In epidemiological terms, this means that the melioidosis infection will per-
sist in the population for 𝑅0 > 1. Moreover, the model has the unique positive, 𝐸∗

𝑒 =
(

250.4653, 0.1079, 1.9961, 0.0792, 45.5589, 12.9749
)

for 𝛷 ≈ 4.7883 × 10−5 in the absence of relapse. However, setting the values of the most sensitive parameters as (𝛼, 𝜎, 𝜇𝑏, 𝜅) =
(0.008, 0.09, 0.01, 7000) yields 𝑅0 ≈ 0.9159 < 1. As a result, the model has the unique DFE, 𝐸∗

0 = (𝛬𝜇 , 0, 0, 0, 0, 0), which is globally
asymptotically stable. Therefore, all model solution trajectories move to 𝐸∗

0 eventually, regardless of the initial population sizes
as shown in Figs. 5(𝑎) – 5(d). From a biological perspective, this suggests that the disease will die out from the population over
time. To eliminate the melioidosis infection disease, it is essential to minimize the value of 𝑅0 as much as possible by implementing
appropriate intervention strategies. The impact of various control interventions on reducing disease spread is discussed in the optimal
control model section.

5.1. Impact of 𝜂1 and 𝜂2 on 𝐼(𝑡), 𝑅1(𝑡) and 𝑅2(𝑡)

The impact of the parameters relapse rate 𝜂1 and reinfection rate 𝜂2 on the dynamics of infectious and recovered (𝑅1 and 𝑅2)
human populations are illustrated in Figs. 7 and 8. Fig. 7(𝑎) shows that the class of pseudo-recovered humans, 𝑅1(𝑡), decreases over
time as 𝜂1 increases. Meanwhile, the population of infectious humans rises as 𝜂1 increases, as depicted in Fig. 7(𝑏). Likewise, it can
e seen in Figs. 8(𝑎) and 8(𝑏) that 𝑅2(𝑡) decreases as 𝜂2 rises in value, consequently leading to an increase in the number of infectious
umans. Therefore, these results suggest that appropriate preventive measures for classes of 𝑅1(𝑡) and 𝑅2(𝑡) should be implemented
o minimize disease recurrence, ultimately leading to a reduction in the infectious human population.

. Analysis of optimal control model

In this section, an optimal control model for the dynamics of melioidosis with recurrence is formulated by incorporating
he time-dependent control functions. Based on the sensitivity analysis results, the following control measures are considered to
etermine effective and cost-effective strategies for eradicating environment-borne melioidosis: 𝜔1(𝑡), denotes prevention efforts
ike wearing protective footwear and gloves, treating unsafe drinking water, and raising public awareness through information and
ducation [2,45]; 𝜔2(𝑡), represents treatment efforts to prevent relapse using eradicating antibiotics (e.g., TMP–SMX for 140 days,
MP–SMX plus doxycycline for over 84 days, or TMP–SMX plus doxycycline plus chloramphenicol for more than 84 days [24]);

3(𝑡), denotes treatment control for 𝐼 using antibiotics such as ceftazidime, carbapenem, or cefepime. Thus, the model (2.3) with

10 
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Fig. 5. Graphical results showing the convergence of solutions of the model (2.3) over time with different initial values to the components of 𝐸∗
0 ; convergence

of (a) (𝑆,𝐸, 𝐼) to ( 𝛬
𝜇
, 0, 0) in 3-D, (b) (𝑅1 , 𝑅2 , 𝑃 ) to (0, 0, 0) in 3-D, (c) 𝑆,𝐸, 𝐼, 𝑅1, and 𝑅2 to 𝛬

𝜇
, 0, 0, 0, and 0, respectively, in 2-D, (d) 𝑃 to 0 in 2-D. The parameter

values given in Table 1 are used except 𝛼 = 0.008, 𝜎 = 0.09, 𝜇𝑏 = 0.01, and 𝜅 = 7000 (so that, 𝑅0 ≈ 0.9159 < 1).

the presence of these controls is formulated as follows.

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

𝑆′(𝑡) = 𝛬 − ((1 − 𝜔1)𝛷 + 𝜇)𝑆,

𝐸′(𝑡) = (1 − 𝜔1)𝛷(𝑆 + 𝜂2𝑅2) − (𝜃 + 𝜇)𝐸,

𝐼 ′(𝑡) = 𝜃𝐸 + (1 − 𝜔2)𝜂1𝑅1 − (𝛾 + 𝛿 + 𝜚𝜔3 + 𝜇)𝐼,

𝑅′
1(𝑡) = (1 − 𝜏)(𝛾 + 𝜚𝜔3)𝐼 −

(

(1 − 𝜔2)𝜂1 + 𝜇
)

𝑅1,

𝑅′
2(𝑡) = 𝜏(𝛾 + 𝜚𝜔3)𝐼 −

(

𝜇 + (1 − 𝜔1)𝜂2𝛷
)

𝑅2,

𝑃 ′(𝑡) = (1 − 𝜔1)𝜎𝐼 − 𝜇𝑏𝑃 ,

(6.1)

subject to the initial conditions: 𝑆(0) ≥ 0, 𝐸(0) ≥ 0, 𝐼(0) ≥ 0, 𝑅1(0) ≥ 0, 𝑅2(0), and 𝑃 (0) ≥ 0, where, the coefficient 𝜚 is the
treatment control rate in infectious class. This problem aims to minimize the infectious human population while keeping the costs
of implementing controls as small as possible. Thus, the objective functional subject to the state system (6.1) is given by

𝑂
(

𝜔1, 𝜔2, 𝜔3
)

= ∫

𝑇𝑓

0

(

𝑊0𝐼 + 1
2

3
∑

𝑛=1
𝑊𝑛𝜔

2
𝑛

)

𝑑𝑡, (6.2)

where, 𝑇𝑓 is the final time, the coefficient 𝑊0 declares the positive weight constant of 𝐼 , while 𝑊1,𝑊2 and 𝑊3 are relative cost
positive weights for optimal controls 𝜔 ,𝜔 and 𝜔 , respectively. We quantify the cost of each control by considering a quadratic
1 2 3

11 



H.A. Engida Results in Control and Optimization 16 (2024) 100476 
Fig. 6. Graphical results showing the convergence of solutions of the model (2.3) over time with different initial values to the components of 𝐸∗
𝑒 ; convergence

of (a) (𝑆,𝐸, 𝐼) to (248.9221, 0.1092, 2.0195) in 3-D, (b) (𝑅1 , 𝑅2 , 𝑃 ) to (0.0801, 44.3091, 13.1266) in 3-D, (c) 𝑆,𝐸, 𝐼, 𝑅1, and 𝑅2 to 248.9221, 0.1092, 2.0195, 0.0801, and
44.3091, respectively, in 2-D, (d) 𝑃 to 13.1266 in 2-D. The parameter values given in Table 1 are used (so that, 𝑅0 ≈ 2.1416 > 1).

objective function. This is because there is no linear relationship between the intervention’s impact and cost for infective classes.
The quadratic nature of the control cost is consistent with previous literature [46–48]. The goal is to find an optimal control,
𝜔∗ = (𝜔∗

1 , 𝜔
∗
2 , 𝜔

∗
3), satisfying

𝑂(𝜔∗
1 , 𝜔

∗
2 , 𝜔

∗
3) = inf{𝑂(𝜔1, 𝜔2, 𝜔3) ∶ 𝜔1, 𝜔2, 𝜔3 ∈ 𝛺}, (6.3)

where, 𝛺 = {
(

𝜔1(𝑡), 𝜔2(𝑡), 𝜔3(𝑡)
)

∶ 0 ≤ 𝜔𝑛(𝑡) ≤ 1, 𝑡 ∈ [0, 𝑇𝑓 ]} is a non-empty control set and each 𝜔𝑛(𝑡) is Lebesgue measurable,
𝑛 = 1, 2, 3.

A Hamiltonian H, of the optimal control problem, based on PMP [49] is formulated as follows:

𝐻 = 𝑊0𝐼 + 1
2

3
∑

𝑛=1
𝑊𝑛𝜔

2
𝑛 + 𝐽1𝑆

′(𝑡) + 𝐽2𝐸
′(𝑡) + 𝐽3𝐼

′(𝑡) + 𝐽4𝑅
′
1(𝑡) + 𝐽5𝑅

′
2(𝑡) + 𝐽6𝑃

′(𝑡). (6.4)

where, 𝐽𝑛 (𝑛 = 1, 2,… , 6) are the co-state variables corresponding to the state variables.

6.1. Existence of an optimal control

We now establish and prove a result for the existence of the optimal control, 𝜔∗, that satisfy Eq. (6.3).
12 
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Fig. 7. Plots demonstrating the impact of 𝜂1 on the populations of (a) infected humans and (b) recovered individuals with relapse (𝑅1).

Fig. 8. Plots illustrating the effects of the re-infection rate, 𝜂2, on the populations of (a) infected humans and (b) recovered individuals with re-infection (𝑅2).

Theorem 6.1. Suppose the objective function 𝑂 is defined on the control set 𝛺 subject to the system (6.1) with non-negative initial
opulation sizes at 𝑡 = 0, then there exists an optimal control 𝜔∗ = (𝜔∗

1 , 𝜔
∗
2 , 𝜔

∗
3) such that 𝑂(𝜔∗) = inf{𝑂(𝜔1, 𝜔2, 𝜔3) ∶ 𝜔1, 𝜔2, 𝜔3 ∈ 𝛺}, if

he following conditions given in [50] hold:

(i) The admissible control set is closed and convex,
(ii) The state system (6.1) is bounded by a linear function in the state and control variables,
(iii) The Lagrangian of the optimal control in (6.2) is convex with respect to the controls,
(iv) There exist constants 𝑘1, 𝑘2 > 0 and 𝑘3 > 1 such that the Lagrangian 𝓁 is bounded below by

𝑘1

( 3
∑

𝑛=1
∣ 𝜔𝑛 ∣

)

𝑘3
2
− 𝑘2.

Proof. (i) Let 𝛺0 = {
(

𝜔1, 𝜔2, 𝜔3
)

∶ 0 ≤ 𝜔𝑛 ≤ 1, 𝑛 = 1, 2, 3} be the control set. Then, 𝛺0, is closed and convex by definition.
(ii) Let 𝑄 = (𝑆,𝐸, 𝐼, 𝑅1, 𝑅2, 𝑃 ) be the state variables of the optimal system (6.1) and 𝛹 (𝑄,𝜔) be the right-hand side of the

( )𝑇
ystem (6.1), where, 𝜔 = 𝜔1, 𝜔2, 𝜔3 . Following, the same approach given in [51,52], the system (6.1) can be written as

13 
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𝛹 (𝑄,𝜔) = 𝛹1(𝑄) + 𝛹2(𝑄)𝜔, where

𝛹1(𝑄) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛬 − (𝛷 + 𝜇)𝑆
𝛷(𝑆 + 𝜂2𝑅2) − (𝜃 + 𝜇)𝐸
𝜃𝐸 + 𝜂1𝑅1 − (𝛾 + 𝛿 + 𝜇)𝐼
(1 − 𝜏)𝛾𝐼 −

(

𝜂1 + 𝜇
)

𝑅1

𝜏𝛾𝐼 −
(

𝜇 + 𝜂2𝛷
)

𝑅2

𝜎𝐼 − 𝜇𝑏𝑃

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎥

⎦

, 𝛹2(𝑄) =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝛷𝑆 0 0
−𝛷(𝑆 + 𝜂2𝑅2) 0 0

0 −𝜂1𝑅1 −𝜚𝐼
0 𝜂1𝑅1 (1 − 𝜏)𝜚𝐼

𝛷𝜂2𝑅2 0 𝜏𝜚𝐼
−𝜎𝐼 0 0

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

. (6.5)

hus, we obtain ‖𝛹 (𝑄)‖ ≤ ‖𝛹1(𝑄)‖ + ‖𝛹2(𝑄)‖‖𝜔‖ ≤ max{𝛤0, 𝛤1}(1 + ‖𝜔‖), where,

𝛤0 =
𝛬
𝜇
√

𝛥0, and 𝛤1 =
𝛬
𝜇
√

𝛥1, (6.6)

ith,

𝛥0 = 2𝛼2 + 2𝜂21 + 3𝜂22 + 𝜎2 + 𝜚2(1 + 𝜏2 + (1 − 𝜏)2), and 𝛥1 = 𝜇2 + 𝛼2(1 + 3𝜂22 ) + (𝜃 + 𝜂2)2 + 𝜎2 + 𝛾2(𝜏2 + (1 − 𝜏)2).

iii) The Lagrangian of the optimal control is given by

𝓁(𝐼, 𝜔) = 𝑊0𝐼 + 𝓁1(𝜔), (6.7)

where, 𝓁1(𝜔) =
1
2
∑3

𝑛=1 𝑊𝑛𝜔2
𝑛. We need to show that the function 𝓁1(𝜔) is convex on the control 𝜔. To perform this, define the

function 𝜑 ∶ 𝛺0 → R by 𝜑(𝜔) = 1
2𝜔

2. Let 𝑦, 𝑧 ∈ 𝛺0, with 𝑦 = (𝑦1, 𝑦2, 𝑦3) and 𝑧 = (𝑧1, 𝑧2, 𝑧3) and 𝜁 ∈ [0, 1]. Then, using the idea of
onvex set in [53], we need to show

𝜑
(

𝜁𝑦 + (1 − 𝜁 )𝑧
)

≤ 𝜁𝜑(𝑦) + (1 − 𝜁 )𝜑(𝑧), ∀𝜁 ∈ [0, 1].

ince 𝜁2 ≤ 𝜁, ∀𝜁 ∈ [0, 1], we obtained

𝜑
(

𝜁𝑦 + (1 − 𝜁 )𝑧
)

−
(

𝜁𝜑(𝑦) + (1 − 𝜁 )𝜑(𝑧)
)

= 1
2
(

𝜁𝑦 + (1 − 𝜁 )𝑧
)2 − 1

2
(

𝜁𝑦2 + (1 − 𝜁 )𝑧2
)

= 1
2
(𝜁2 − 𝜁 )

(

𝑦 − 𝑧
)2

≤ 0.
(6.8)

s a result, the function 𝓁1(𝜔) is convex on 𝜔.
(iv) The Lagrangian in Eq. (6.7) is the sum of non-negative terms 𝑊0𝐼 and 𝓁1(𝜔), the last condition is shown as follow:

𝓁(𝐼, 𝜔) = 𝑊0𝐼 + 1
2

3
∑

𝑛=1
𝑊𝑛𝜔

2
𝑛 ≥

1
2

4
∑

𝑛=1
𝑊𝑛𝜔

2
𝑛 ≥

𝑘1
2

( 3
∑

𝑛=1
∣ 𝜔𝑛 ∣2

)

𝑘3
2
− 𝑘2, (6.9)

here, 𝑘1 = min{𝑊1,𝑊2,𝑊3}, 𝑘2 > 0 and 𝑘3 = 2. □

heorem 6.2. Suppose the set 𝜔∗ = (𝜔∗
1 , 𝜔

∗
2 , 𝜔

∗
3) minimizes 𝑂 over 𝛺 subject to the optimal system (6.1), then there exist adjoint variables

1, 𝐽2, 𝐽3, 𝐽4, 𝐽5, 𝐽6 that satisfying

𝑑𝐽1
𝑑𝑡

= (𝐽1 − 𝐽2)(1 − 𝜔1)𝛷 + 𝐽1𝜇,

𝑑𝐽2
𝑑𝑡

= (𝐽2 − 𝐽3)𝜃 + 𝐽2𝜇,

𝑑𝐽3
𝑑𝑡

= −𝑊0 + 𝐽3(𝛾 + 𝛿 + 𝜚𝜔3 + 𝜇) − 𝐽4(𝛾 + 𝜚𝜔3)(1 − 𝜏) − 𝐽5(𝛾 + 𝜚𝜔3)𝜏 − 𝐽6𝜎(1 − 𝜔1),

𝑑𝐽4
𝑑𝑡

= (𝐽4 − 𝐽3)(1 − 𝜔2)𝜂1 + 𝐽4𝜇,

𝑑𝐽5
𝑑𝑡

= (𝐽5 − 𝐽2)(1 − 𝜔1)𝜂2𝛷 + 𝐽5𝜇,

𝑑𝐽6
𝑑𝑡

= (𝐽1 − 𝐽2)(1 − 𝜔1)
𝛼𝜅𝑆

(𝜅 + 𝑃 )2
+ (𝐽5 − 𝐽2)(1 − 𝜔1)

𝛼𝜅𝜂2𝑅2

(𝜅 + 𝑃 )2
+ 𝜇𝑏𝐽6,

(6.10)

nd with final time conditions,

𝐽𝑛(𝑇𝑓 ) = 0, 𝑛 = 1, 2,… , 6. (6.11)

urthermore, the optimal controls 𝜔∗
𝑘, 𝑘 = 1, 2, 3 that minimizes 𝑂 over 𝛺 are given by

𝜔∗
1 = max

{

0,min
{ (𝐽2 − 𝐽1)𝛷𝑆 + (𝐽2 − 𝐽5)𝛷𝜂2𝑅2 + 𝜎𝐼𝐽6

𝑊1
, 1
}

}

, 𝜔∗
2 = max

{

0,min
{ (𝐽3 − 𝐽4)𝜂1𝑅1

𝑊2
, 1
}

}

,

𝜔∗ = max
{

0,min
{ (𝐽3 − 𝐽4(1 − 𝜏) − 𝐽5𝜏)𝜚𝐼 , 1

}

}

.
(6.12)
3 𝑊3
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Proof. Let 𝜒∗ = (𝑆∗, 𝐸∗, 𝐼∗, 𝑅∗
1 , 𝑅

∗
2 , 𝑃

∗) and 𝜔∗ = (𝜔∗
1 , 𝜔

∗
2 , 𝜔

∗
3) be corresponding solutions satisfying (6.1) and (6.3), respectively. We

se the standard results presented in [54] to derive the adjoint system and the optimal control. With the help of PMP [54], the adjoint
ystem is determined by taking the negative of the derivative of H (6.4) with respect to associated state variables 𝑆,𝐸, 𝐼, 𝑅1, 𝑅2, 𝑃
espectively:

−
𝑑𝐽1
𝑑𝑡

= 𝜕𝐻
𝜕𝑆

, −
𝑑𝐽2
𝑑𝑡

= 𝜕𝐻
𝜕𝐸

, −
𝑑𝐽3
𝑑𝑡

= 𝜕𝐻
𝜕𝐼

, −
𝑑𝐽4
𝑑𝑡

= 𝜕𝐻
𝜕𝑅1

, −
𝑑𝐽5
𝑑𝑡

= 𝜕𝐻
𝜕𝑅2

, −
𝑑𝐽6
𝑑𝑡

= 𝜕𝐻
𝜕𝑃

, (6.13)

ith 𝐽𝑛(𝑇 ) = 0, 𝑛 = 1, 2,… , 6. Lastly, to find optimal controls in the interior of the control set 𝛺, we employ
𝜕𝐻
𝜕𝜔𝑘

= 0, for 𝜔∗
𝑘, 𝑘 = 1, 2, 3. (6.14)

Solving Eq. (6.14) for each optimal control 𝜔∗
1 , 𝜔

∗
2 and 𝜔∗

3 gives the relation which is the same as given in (6.12). □

6.2. Numerical simulations

This section presents numerical simulations of the optimality system, comprising the state system (6.1), co-state system (6.10)
with its final conditions (6.11) and the characterization of the optimal controls (6.12) for the melioidosis model. To demonstrate this,
we use the forward–backward sweep method in MATLAB [55]. We set the tolerance to 𝜋 = 0.0001, to reduce the error. The aim is to
illustrate the most effective and cost-effective control strategies for mitigating the spread of the disease. The parameter values used
in the simulations are listed in Table 1, while the initial population sizes for each class are given in Eq. (5.1). Moreover, the weight
constant of the infectious class is 𝑊0 = 10 and weight constant values for the controls are assumed as; 𝑤1 = 10, 𝑤2 = 10, 𝑤3 = 20.
The treatment control rate is 𝜚 = 0.75. The choice of the treatment control rate is based on the relapse rates of melioidosis infection,
ranging from 13% to 23% in patients [22,56].

The numerical experiments of the optimality system are performed to assess the effectiveness of seven different optimal control
strategies, which are grouped into three scenarios as follows:

Scenario I: Optimal use of single control:

∙ Strategy 𝐴: impact of prevention control (𝜔1 ≠ 0, 𝜔2 = 𝜔3 = 0),
∙ Strategy 𝐵: impact of relapse preventive effort 𝑅1 (𝜔2 ≠ 0, 𝜔1 = 𝜔3 = 0),
∙ Strategy 𝐶: impact of treatment control of 𝑅2 (𝜔3 ≠ 0, 𝜔2 = 𝜔1 = 0).

Scenario II: Optimal use of double controls:

∙ Strategy 𝐷: Combination of optimal controls 𝜔1 and 𝜔2,
∙ Strategy 𝐸: Combination of optimal controls 𝜔1 and 𝜔3,
∙ Strategy 𝐹 : Combination of optimal controls 𝜔2 and 𝜔3.

Scenario III: Optimal use of all controls:
∙ Strategy 𝐺: Combination of the optimal controls, 𝜔1, 𝜔2, and 𝜔3.

6.2.1. Scenario I: Optimal use of single control
This scenario compares the effectiveness of the optimal strategies 𝐴,𝐵 and 𝐶 on classes of 𝐼 and 𝑃 . The numerical results of

this scenario are depicted in Fig. 9 and Table 3. Fig. 9(𝑎) and Table 3 illustrate that strategy 𝐶 has the highest number of infectious
averted followed by strategy 𝐴, then strategy 𝐵. Similarly, Fig. 9(𝑏), shows that strategy 𝐶 is the most effective to eliminate the
pathogen population in the environment compared to strategies 𝐴 and 𝐵. Furthermore, the optimal control profiles for the three
strategies are given in Figs. 10 (𝑎) – 10(𝑐). The control profile for strategy 𝐴 shows that the prevention effort 𝜔1 should be maintained
at the upper bound (100%) for the first 135.5 days and then reduced to zero (lower bound) for the rest of the simulation period,
as depicted in Fig. 10(𝑎). The control profile of strategy 𝐵 in Fig. 10(𝑏) illustrates that the optimal control 𝜔2 is consistently at the
upper bound throughout the entire intervention period (for 200 days). The control profile for strategy 𝐶 is revealed in Fig. 10(𝑐),
where it is observed that the control was at maximum effort for 82.6 days before reducing to the lower bound.

6.2.2. Scenario II: Optimal use of double controls
In this scenario, we implement the optimal strategies 𝐷,𝐸 and 𝐹 to compare their effectiveness. The simulation results of this

scenario are shown in Fig. 11. As depicted in Figs. 11(𝑎) and 11(𝑏) the number of infectious individuals and the size of the bacterial
population decrease more rapidly when implementing strategies 𝐷,𝐸 and 𝐹 compare to the case without strategies. However,
strategy 𝐹 leads to a greater decrease in the size of 𝐼 compared to strategies 𝐷 and 𝐸, as confirmed in Fig. 11(a) and Table 3. A
similar result is evident in Fig. 11(b) for the bacterial class. Furthermore, the optimal control profiles in these strategies are given in
Figs. 12(𝑎) – 12(𝑐). The control profile of strategy 𝐷 in Fig. 12(𝑎) shows that the preventive measure 𝜔1 should be maintained at the
maximum effort for the first 134 days and subsequently it should be gradually reduced to lower bound for the rest of the simulation
time, while the control 𝜔2 is maintained at 100% throughout the entire intervention period. Likewise, the control profile of strategy
𝐹 in Fig. 12(𝑐) shows that the control 𝜔2 should be maintained at the maximum effort for the first 15 days and subsequently it should
be gradually reduced to lower bound for the rest of the simulation time, while the control 𝜔3 is maintained at 100% throughout
the entire intervention period. The control profile of strategy 𝐸 in Fig. 12(𝑏) reveals that the controls 𝜔1 and 𝜔3 maintain the upper

bound for the first 27 and 66 days, respectively before lowering gradually to zero rapidly in the rest of simulation period.
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Fig. 9. Plots showing the dynamics of the model with and without Strategy 𝐴,𝐵 & and 𝐶 on classes of (a) 𝐼(𝑡) and (b) 𝑃 (𝑡).

Fig. 10. Plots showing the control profiles of the strategies 𝐴,𝐵 & and 𝐶.

Fig. 11. Plots showing the dynamics of the model with and without Strategies 𝐷,𝐸 & and 𝐹 on classes of (a) 𝐼(𝑡) and (b) 𝑃 (𝑡).
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Fig. 12. Plots showing the control profiles of the three strategies 𝐷,𝐸 & and 𝐹 .

Fig. 13. Plots showing the impact of Strategy 𝐺 on classes of infected humans and pathogens.

.2.3. Scenario III: Optimal use of all optimal controls
In this scenario, we implement all the control functions 𝜔1, 𝜔2 and 𝜔3. The graphical results of this scenario are illustrated

n Fig. 13. Figs. 13(𝑎) and 13(𝑏) indicate that the number of infected humans (𝐸 and 𝐼) and the pathogen population decrease
ignificantly when strategy G is used, while the populations of infectious humans (𝐼) and pathogens increase in the absence of this
trategy throughout simulation time. The control profiles of the last scenario are depicted in Fig. 13(𝑐). In Fig. 13(𝑐), it can be seen
hat control 𝜔3 are kept at 100% for 13.2 days before gradually declining to zero by the end. While control 𝜔1 rises from 44.5% to
0% before gradually decreasing to zero at the end of the simulation period. Meanwhile, the control 𝜔2 is consistently at maximum
ffort 100% throughout the entire intervention period, as revealed in Fig. 13(𝑐).

.2.4. Comparison of the most effective strategies
Based on the results illustrated under scenarios 𝐼 − 𝐼𝐼𝐼 , we compare the effectiveness of strategies 𝐶, 𝐹 and 𝐺 to determine the

ost effective among them in mitigating the spread of melioidosis with recurrence. The graphical comparison results are presented
n Fig. 14. As depicted in Fig. 14(𝑎), the number of susceptible individuals in the population decreases more rapidly in the absence
f strategies 𝐶, 𝐹 and 𝐺 than the number of susceptible individuals in the presence of the strategies throughout the simulation
eriod. However, strategy 𝐺 minimizes the number of susceptible individuals getting infected by melioidosis more effectively than
trategies 𝐵 and 𝐶, as observed in Fig. 14(𝑎). Likewise, from Fig. 14(𝑏), Fig. 15 and Table 3, we noticed that strategy 𝐺 has the
ighest number of infected averted individuals, followed by strategy 𝐹 and then strategy 𝐶. The findings from Fig. 14(𝑐) also indicate
similar outcome for the bacterial class. Arising from the numerical results in Figs. 14 (𝑎) - (𝑐), we conclude that strategy 𝐺 is the
ost prominent in reducing environmental-borne melioidosis in the population, regardless of the control costs. Thus, public health

enters and policymakers should prioritize implementing a strategy that combines three control measures 𝜔1, 𝜔2 and 𝜔3 to diminish
he impact of melioidosis in the community.

.3. Cost-effectiveness analysis

This section presents a cost-effectiveness analysis to identify the most cost-effective strategy among optimal strategies imple-
ented in the previous section. To perform this, we employ two approaches; the average cost-effectiveness ratio (ACER) and the

ncremental cost-effectiveness ratio (ICER) in the sense of [34,41,57,58].
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Fig. 14. Plots demonstrating the impact of the most effective strategies 𝐶, 𝐹 & 𝐺 on dynamic behavior of (a) susceptible individuals, (b) infectious individuals,
and (c) the disease’s pathogen.

Table 3
Increasing order of infection averted, Total cost and ACER.

Strategy Infection averted Total cost ($) ACER

B 19 124 4996.6 0.2613
A 32 551 4192.9 0.1288
D 44 570 9048.6 0.2030
C 74 751.3 7603.3 0.1017
E 75 074.7 8307.7 0.1107
F 76 549.6391 7317 0.0956
G 76 611.7 7463.8 0.0974

The ACER quantifies one strategy to its baseline option. This ratio for a particular strategy 𝜙 is calculated as:

ACER( 𝜙 ) =
Total cost incurred by 𝜙

Total number of infection averted by strategy 𝜙
. (6.15)

here, numerator of (6.15) is estimated from

𝐶𝜙 = 1
2 ∫

200

0

( 3
∑

𝑛=1
𝑊𝑛𝜔

2
𝑛

)

𝑑𝑡, and (6.16)

he total number of infections averted is calculated by subtracting the number of infectious humans with control from the number
f infectious humans without control. Therefore, the total number of infections averted (𝐼𝑡𝑜𝑡𝑎𝑙) during the intervention period is
stimated as follows:

𝐼𝑡𝑜𝑡𝑎𝑙 = ∫

200

0
𝐼(𝑡) 𝑑𝑡 − ∫

200

0
𝐼∗(𝑡) 𝑑𝑡, (6.17)

ith, ∫ 200
0 𝐼(𝑡) 𝑑𝑡 represents the total number of infectious cases without control over [0,200], and ∫ 200

0 𝐼∗(𝑡) 𝑑𝑡 denotes the total
umber of infectious humans with control. The total cost for each of the strategies 𝐴−𝐺 is obtained using Eq. (6.16) and is given in
he third column of Table 3 and in percentage by pie chart in Fig. 16. While 𝐼𝑡𝑜𝑡𝑎𝑙 for the strategies is computed using Eq. (6.17) and
s listed in the second column of Table 3 in increasing order of 𝐼𝑡𝑜𝑡𝑎𝑙. The ACER for optimal strategies is computed using Eq. (6.15)
nd presented in the 4th column of Table 3. Based on this approach, the strategy with the lowest ACER value is considered the most
ost-effective. Therefore, the ACER values in Table 3 and Fig. 17 indicate that strategy F, with the smallest ACER value, is the most
ost-effective strategy. This result is further supported by calculating the ICER values for the control strategies.

The second method, ICER, involves comparing the incremental difference in costs and health outcomes between two alternative
ntervention strategies that are competing for the same resources. The ICER value for two strategies 𝑆1 and 𝑆2 is calculated as
ollows:

ICER =
Change in total intervention costs in strategies 𝑆1 and 𝑆2

Change in the total number of infections averted in strategies 𝑆1 and 𝑆2
. (6.18)

he implemented strategies are ranked according to their increasing order of 𝐼𝑡𝑜𝑡𝑎𝑙 as shown in the second columns of Table 3. Based
n the ICER approach, the strategy to be removed from the list of alternative strategies at each step corresponds to the largest ICER
alue.

We use Eq. (6.18) to calculate the ICER for strategies 𝐵 and 𝐴 and compare the values as follows:

ICER(B) = 4996.6 − 0 = 0.2613, ICER(A) = 4192.9 − 4996.6 = −0.0599. (6.19)

19124 − 0 32551 − 19124
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Fig. 15. Total number of infections averted for control strategies.

Fig. 16. Total cost produced by control strategies.

In (6.19)ICER(A) is less than ICER(B), indicating that strategy 𝐵 strongly dominated by strategy 𝐴. Thus, strategy 𝐴 is less expensive
and more effective than strategy 𝐵. As a result, strategies 𝐴 and 𝐷 are compared instead of strategy 𝐵, which is excluded from the
roster of intervention strategies.

ICER(A) = 4192.9 − 0
32551 − 0

= 0.1288, ICER(D) = 9048.6 − 4192.9
44570 − 32551

= 0.4040. (6.20)

Comparing ICER values in (6.20), the result indicates that strategy 𝐷 is more costly than strategy 𝐴 as ICER(D) > ICER(A). Thus,
strategy 𝐷 is removed from the list of alternative interventions. Hence, strategies 𝐴 and 𝐶 are compared.

ICER(A) = 4192.9 − 0
32551 − 0

= 0.1288, ICER(C) = 7603.3 − 4192.9
74751.3 − 32551

= 0.0808. (6.21)

The comparison in (6.21) shows that ICER(A) > ICER(C), as a result, strategy 𝐶 is less expensive than strategy 𝐴 and should be
eliminated from the list of alternative interventions. We compare strategies 𝐶 and 𝐸.

ICER(C) = 7603.3 − 0
74751.3 − 0

= 0.1017, ICER(E) = 8307.7 − 7603.3
75074.7 − 74751.3

= 2.1781. (6.22)

From Eq. (6.22), it can be seen that ICER(E) > ICER(C), shows that strategy 𝐶 dominates strategy 𝐸. Thus, strategy 𝐸 is more
expensive than strategy 𝐶. Consequently, strategy 𝐸 is excluded from the list of alternative interventions. We compare strategies
𝐹 & 𝐶 as follow:

ICER(C) = 7603.3 − 0
74751.3 − 0

= 0.1017, ICER(F) = 7317 − 7603.3
76549.6391 − 74751.3

= −0.1600. (6.23)

It is evident from (6.23) that strategy 𝐶 is more costly than strategy 𝐹 . Consequently, strategies 𝐹 & 𝐺 are compared as follow:

ICER(F) = 7317 − 0
76549.6397 − 0

= 0.0956, ICER(G) = 7463.8 − 7317
76611.7 − 76549.6397

= 2.3654. (6.24)

Finally, the values of ICER in (6.24) indicate that strategy 𝐹 is less costly than strategy 𝐺. Consequently, strategy 𝐺 is removed
from the list of alternative interventions. Hence, strategy 𝐹 (combination of optimal controls 𝜔2 and 𝜔3) is the most cost-effective
among all implemented strategies. This outcome agrees with the results of ACER given in Table 3. This suggests that melioidosis
infection with recurrent can be eliminated with minimal intervention costs by providing treatment control for the infectious class
and implementing efforts to prevent the disease relapse.
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Fig. 17. ACER of control strategies.

. Conclusion

In this paper, a compartmental model of environmental-born human melioidosis dynamics with recurrent phenomena has been
roposed and rigorously analyzed. The analysis of the formulated model has been performed in two parts: global stability and
ensitivity analysis of the autonomous melioidosis model, and optimal control problem analysis of the model with time-dependent
ontrol functions. The basic reproduction number (𝑅0) of the model was obtained based on the method of the next-generation
atrix. The proposed model has two unique equilibria: one is disease-free (DFE) and the other is disease-presence equilibrium (𝐸∗

𝑒 ).
lobal asymptotic stability of the model’s equilibria were examined using appropriate Lyapunov functions. It is shown that DFE

s globally asymptotically stable when 𝑅0 ≤ 1, regardless of the presence or absence of disease recurrence. Whereas, the unique
ndemic equilibrium is globally asymptotically stable if 𝑅0 exceeds unity, again in both the presence and absence of relapse and
e-infection. Thus, the system (2.3) does not exhibit backward bifurcation phenomena with or without recurrence. This suggests
hat melioidosis infection can be eradicated in the population when 𝑅0 is less than one. Moreover, numerical results for the global
tability of equilibria were carried out to reinforce the analytical analysis of the autonomous model using the 𝑜𝑑𝑒45 algorithm in
ATLAB. It is observed that the model solutions converge to DFE (or 𝐸∗

𝑒 ) when the basic reproduction number is less than (or
reater than) one, respectively, as depicted in Figs. 5 and 6.

Next, we have formulated an optimal control problem by including three control functions: prevention effort 𝜔1(𝑡), treatment
ontrol 𝜔2(𝑡) for the infectious class, and relapse-preventing measures using eradicating antibiotics 𝜔3(𝑡). Pontryagin’s maximum
rinciple has been employed to obtain the necessary conditions for the optimal control problem. Numerical experiments on the
on-autonomous model are conducted in three scenarios (𝐼 − 𝐼𝐼𝐼) to evaluate the effectiveness of seven different control strategies
𝐴 − 𝐺). From simulation results, we noticed that implementing all controls 𝜔1, 𝜔2 and 𝜔3 simultaneously is the most effective
trategy in reducing the transmission of melioidosis in the population, as shown in Figs. 10–15 and in Table 3. Meanwhile, the
uantitative results from cost-effectiveness analysis indicated that implementing the combination of two controls 𝜔2 and 𝜔3 is the
ost cost-effective optimal strategy to minimize the disease spread with recurrent in the community, as confirmed by ICER values

n Eqs. (6.19)–(6.24), and ACER values in Table 3 and in Fig. 17.
In this paper, disease transmission between humans and animals for the formulated model has not been taken into account.

lthough the effect of animals on disease transmission is uncommon, the impact of transmission between humans and animals on
nfection rates can be considered. Also, the seasonal factor’s effects have not been taken into account. A more general model can
e proposed, incorporating the impact of seasonal factors on melioidosis to provide more insight into the disease’s transmission.
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