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ARTICLE INFO ABSTRACT

Keywords: Melioidosis is a significant health problem in tropical and subtropical regions, especially in
Melioidosis model Southeast Asia and Northern Australia. Recurrent melioidosis is a major obstacle to eliminating
B.pseudomallei

the disease from the community in these nations. This work aims to propose and analyze
a human melioidosis model with recurrent phenomena and an optimal control model by
incorporating time-dependent control functions. The basic reproduction number (R;) of the
uncontrolled model is derived using the method of the next-generation matrix. Using the
construction of a Lyapunov functional, we present the global asymptotic dynamics of the
autonomous model in the presence of recurrent for both disease-free and endemic equilibria. The
global asymptotic stability of the model’s equilibria shows the absence of a backward bifurcation
for the model in both cases, whether in the absence or presence of relapse. The sensitivity
analysis aims to identify the parameters that have the most significant impact on the model’s
dynamics. Furthermore, qualitative analysis of the model’s global dynamics and the changing
effect of the most influential parameters on R, are supported by numerical experiments, with the
results being illustrated graphically. The model with time-dependent controls is analyzed using
optimal control theory to assess the impact of various intervention strategies on the spread of
the epidemic. The numerical results of the optimality system are carried out using the Forward—
Backward Sweep method in Matlab. We also conducted a cost-effectiveness analysis using two
approaches: the average cost-effectiveness ratio and the incremental cost-effectiveness ratio.

Recurrent

Global stability
Optimal control
Cost-effective strategy

1. Introduction

Melioidosis is an infectious disease caused by the facultative intracellular gram-negative bacterium Burkholderia pseudomallei
(B. pseudomallei). The environment (wet soil and surface water) is the natural reservoir of the pathogen in certain regions of the
world where the disease is prevalent [1,2]. The organism is endemic in Southeast Asia and Northern Australia and is becoming a
significant emerging infection in other tropical and subtropical regions of the world, such as India, China, Sub-Saharan Africa, and
Central and South America [3,4]. Recent studies have estimated that there are about 165,000 human melioidosis cases annually
worldwide, with 89,000 (54%) fatalities [5,6]. Humans acquire B.pseudomallei infections through contact with a contaminated
environment (soil or water) via percutaneous inoculation, inhalation, or ingestion [7-9]. Human-to-human transmission has been
reported as extremely rare, with only a few suspected cases documented to date [10,11]. Melioidosis is a severe human infection,
which can manifest as acute, chronic, or recurrent, with a mortality rate ranging from 10-50% [12,13]. Subsequent studies have
shown that the recurrence of the disease occurs from 5.7-25% in patients, depending on the geographical area. Recurrence of
melioidosis is commonly reported in endemic areas, and can be classified as either a relapse or a reinfection [14,15]. Relapse
involves the reappearance of B. pseudomallei infection with the same genotype as the original infection, accounting for 74-75% of
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all recurrences [16,17]. On the other hand, reinfection is the emergence of a new infection with a different genotype from that
of the original infection, and it ranges from 25-26% of all recurrences [18,19]. Patients with mild illness can be treated through
intravenous antibiotics involving ceftazidime, imipenem, carbapenem, cefepime or meropenem [20,21]. In fact, B. pseudomallei
species are inherently resistant to multiple classes of antimicrobial agents [22,23]. Recent studies have reported that treatments
such as trimethoprim-sulfamethoxazole (TMP-SMX) for 140 days, TMP-SMX plus doxycycline for more than 3 months, or TMP-
SMX plus doxycycline plus chloramphenicol for more than 12 weeks are currently recommended to prevent severe and relapse
melioidosis [24-26].

Many fields including mathematical biology, epidemiology, engineering, and economics require applying applied mathematics
to describe various phenomena mathematically [27]. Specifically, mathematical modeling is a powerful tool for studying infectious
diseases. It helps to understand and predict disease spread, and optimize control interventions using optimal control theory. The
optimal control theory is vital in designing better health measures for a specific mathematical model to control and eventually
eliminate diseases [28-30].

A few deterministic mathematical models have been proposed in various forms to study the transmission dynamics of melioidosis
in the absence of optimal controls. In [31], the authors developed a melioidosis model under the assumption that the recovered
individuals either return to the latently infected (exposed) class (re-infection) or to the infectious class (relapse), but they considered
one recovered class (without separating relapse and re-infection in their model). They showed the existence of backward bifurcation
in the presence of disease recurrence. They also considered both human-to-human and environment-to-human transmission paths
in the transmission dynamics of the diseases.

The authors in [32] presented a mathematical model of melioidosis dynamics with the assumption that the latently-infected
humans progress to either symptomatic class (infectious individuals that are showing symptoms) or to asymptomatic (infectious
individuals without symptoms). Meanwhile, the author in [33] proposed a deterministic model to achieve the effectiveness of two
control measures on the transmission dynamics of melioidosis using optimal control theory. They considered a single transmission
way, mass action incidence rate (homogeneous interaction) for interaction between susceptible humans and contaminated environ-
ment. Likewise, the authors in [34] recently investigated a non-autonomous melioidosis model by applying optimal control theory,
expanding on the research started in [32].

The global asymptotic dynamics of the melioidosis model and the impact of optimal control measures in the presence of disease
recurrence have not been explored in the existing literature. Other existing disease models that did not consider the recurrence
focused solely on the local stability of the model’s steady states. Therefore, this crucial aspect is overlooked for environmental-born
melioidosis in the population. Also, the existing melioidosis model with recurrent cases experiences backward bifurcation in the
presence of disease recurrence [31]. In this work, we consider two distinct biological recurrences of melioidosis — relapse and re-
infection — as separate classes. Thus, this study examines the global dynamic behavior of a robust melioidosis model in the presence of
relapse and re-infection based on applications of the Lyapunov stability approach and optimal control theory with cost-effectiveness
analysis. Thus, we aim to answer the following: (i) what will be the sufficient condition for the disease elimination? (ii) Is it possible
to establish the absence of the phenomenon of backward bifurcation in the presence of reinfection and relapse? (iii) Is it possible
to establish a result for global asymptotic stability of the existing disease-free equilibrium point in the presence of reinfection and
relapse? (iv) what will be the sufficient condition for global asymptotic stability of the existing endemic equilibrium point in the
presence of reinfection and relapse? (v) what will be the most effective control measures for disease elimination? (vi) what will be
the most cost-effective strategy for disease control?

The rest of the paper is organized as follows: A compartmental model is formulated in Section 2. The basic qualitative properties
of the model (non-negativity and boundedness of solutions) and the existence and stability of equilibria are presented in Section 3.
Section 4 presents the sensitivity analysis of the basic reproduction number. The numerical simulations of the autonomous model are
presented in Section 5. The formulation, theoretical analysis, numerical simulations, and cost-effectiveness analysis of the optimal
control problem are provided in Section 6. Concluding remarks and future directions are given in Section 7.

2. Model formulation

The model proposed consists of human and the disease’s pathogen populations. Based on the disease’s epidemiological behaviors,
the total human population at any time ¢, denoted by N(¢), is divided into five distinct classes: susceptible S(7), infected individuals
but not infectious (exposed) E(¢), infectious individuals /(¢), pseudo-recovered individuals with possible reactivation of infection
(relapse) represented by R;(#), and R,(¢) denotes recovered individuals with possibility of reinfection. Thus, N(r) is given by

N@® = SO+ E@) + I(®) + R, (1) + Ry(0). 2.1

The pathogen population at time ¢ is represented as P(¢). Susceptible individuals are assumed to be recruited at a constant rate of
A. The susceptible class could acquire the disease through percutaneous inoculation, inhalation, and ingestion of the pathogen from
the contaminated environment at the rate

o= 2.2)

K+ P

and progress to exposed class, where « is transmission rate, x is the constant pathogen concentration in the environment that
yields 50% chance of catching melioidiosis, and a nonlinear expression HLP denotes the contact probability between humans and
contaminated environment. Hence, the number of infections per unit of time is given by @S. The individuals in I move to either R,
with probability = or progress to R; with probability 1 — z. After recovery from infection, an individual is not permanently immune
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Table 1
Descriptions and values of parameters of the model.
Parameter Description Value Unit Source
A Human recruitment rate HUXNO Humans day’l [31,32]
a Transmission rate 0.0185 Day™! Assumed
u Natural death rate of humans ?5><+65 Day~! [31]
0 Progression rate of E to I 5 Day™! [32,33]
y Recovery rate 0.0037 Day™! [32,35]
13 Disease-induced death rate 0.005 Day'1 [31,32]
n Relapse rate of humans in R, 0.069 Day™! Assumed
1 Reduction rate of infectivity in R, 0.035 Dimensionless Assumed
- Rate at which bacteria increase by I 0.13 w [33]
umans day
Hy Natural mortality rate of pathogens 0.02 Day™! [32,33]
K Concentration of B. pseudomallei 5000 No. of B. pseudomallei cell Assumed
mARi
P -
-. Tyl wRy
E 2P Ry T~
pS pE plRo

Fig. 1. Schematic diagram illustrating the dynamics of melioidosis with recurrence: The yellow bold arrow indicates the movement of individuals from one
compartment to the other, the blue dotted arrow represents the contribution of the infectious class to the pathogen class, and the red dotted segment indicates
the contribution to transmission. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

from B.pseudomallei, particularly due to recurrence (either relapse or reinfection). Thus, individuals in R, class could acquire re-
infection at the rate #,® and move to the exposed class, where, 7, € [0, 1] is the reduction in infectivity of R,. Also, it is assumed that
individuals in R, class relapse at the rate #,. Furthermore, the natural mortality rates of humans and the pathogen are represented
by u and u,, respectively. The size of class P grows in a contaminated environment due to the release of the pathogen from class
I at a rate of o.
Model’s parameter descriptions and values are explained in Table 1.
Based on the model descriptions above, the compartmental melioidosis model with recurrence is shown in Fig. 1.
According to Fig. 1, the melioidosis model takes the following system of non-linear ODEs:

ds
di
dE
dr
dI
dt
dR,
dr
dR,
“ar
dP
ar

=A—< aP
K+

aP

+/4>S,

= L (S+mRy) - O+ WE,

K+ P

=0E+mR —(+6+ul,

(A =2yl =@ + Ry,

aP
=7yl - (M +"2K+_P>R2’

=ol — u,P,

with the initial conditions;

S0)>0,E0)>0,I(0)>0,R;(0)>0,R,(0)>0,and P(0)>0.

(2.3)
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3. Model analysis
In this section, we qualitatively analyze the autonomous model (2.3).
3.1. Basic properties of the model

3.1.1. Non-negativity of the model solutions
For the model equation system (2.3) to be epidemiologically meaningful, it is crucial to demonstrate that all its state variables
remain non-negative over time ¢.

Theorem 3.1. Let the set for the initial states be M, = <S(0),E(O),1 (0), R;(0), RZ(O),P(O)) € Ri U {0}. Then, the solutions
{S(t), E(@), 1(t), R, (1), Ry (1), P(t)} of the model (2.3) are non-negative for all t > 0.

Proof. Let 1, = sup{t >0 S(ty) > 0, E(tg) > 0, 1(ty) > 0, R, (ty) > 0, Ry(ty), P(t) > 0.V, in [0, z]}. It follows that ¢, > 0. From the
1st equation of the system (2.3) it follows that

ds aP
— + (D + u)S = A, where, @ = .
ar T@tn K+ P

By applying the method of integrating factor on Eq. (3.1), we have

(3.1)

% [s(r)e*"ﬁf(ff “’("““] = Ahtr+ly owan, (3.2)
Integrating both sides of Eq. (3.2) yields,

S e Wi _ g0y = / "4 [t o] g,

0

Therefore,

S(t) = SO H=h! owan [e“”f'f‘;f mm] x / Y [erers ewing] av >

0

Also from the 5th equation of the system (2.3) it follows that

dR,

—<>—(u+
dt = (” 2

aP
K+ P

>R2 > —(/4+r]2a)R2, (3.3)

since the state variables and parameters are non-negative HLP <l=> < u+ '12% )R2 <|\u+ 'IzaP R,.
Thus, using integrating factor method and the comparison theorem given in [36] the inequality (3.3), yields

Ry(1) > Ry (0)e" W+ > 0, vt > 0.

In the same manner,

L2 > 0+ nE = B0 2 EQe ™ 20> 0,

ar —y+ 5+ mwI, = I@) > I(0)e” "+ > 0,vt > 0,
) dﬁt

d—t‘ > —(m + Ry, = Ri(1) = R0+ > 0,v1 > 0,

% > —uyP, = P(t) > P(0)e™™' > 0,V1 > 0.

Hence, the solutions of (2.3) with non-negative initial conditions M, € Rfr U {0} remain non-negative for all s > 0.[]
3.1.2. Boundedness of the model solutions

Lemma 3.2. The closed set D, given by D, = {(S,E,I,R|,R,,P) € R‘jr 0 N0® <L %,0 < P(t) < %}, is positively invariant and
b
attracts every positive solution of the model.

Proof. Adding all the first five equations of the system (2.3), yields
dN(1)

o = A= uN@®) =610, (3.4)
Since 6 and I are non-negative, from Eq. (3.4), it follows that
N N
d dt(t) < A—uN(@), or d dt(t) +uN(@) < A, Vi>0. (3.5)
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Applying the integrating factor method and the comparison theorem [36]to Eq. (3.5), gives
No <2+ (W)= 2 e (3.6)
U H

Thus, 0 < lim,_,,, SUupN () < % In particular, if N(0) < %, then N(@1) < % Vt > 0. Furthermore, if N(0) > %, then either the
solution enters the region D, in finite time or N(r) — 4 asymptotically as 1 — co.

Lastly, using the last equation of (2.3), and the Egs. f2.1) and (3.6), we obtain
Piy< 244 (P(O) - ﬂ)e-ﬂb’, Vi > 0.
HpH Hph
This implies that

0 < lim supP(1) < 24,
1—e Hyht

Therefore, 0 < P(1) < % whenever, 0 < P(0) < ﬁ,‘v’t > 0. Similarly, P(r) — % asymptotically as 7 — co. Consequently, the region
b b,

D, c RS is positively invariant and attracts all solutions of the system (2.3), it suffices to analyze the model in this region [37]. []
3.2. Stability analysis of model’s equilibria

3.2.1. The disease-free equilibrium and basic reproduction number of the model
The disease-free equilibrium (DFE) of the model (2.3), denoted by E?, is given by

E; = (8;.0,0,0,0,0) = (io,o,o,o,o). 3.7
2]

Applying the next-gen matrix approach given in [38] to system (2.3), yields the basic reproduction number (R;) of the model as
follows: The transfer matrices are given as:

0 0 o0 e 0 0 0
KH
0 0 0 0 -0 e -n 0
F= , V= .
00 0 0 0 —(l-72y e 0
00 0 0 0 -o 0

where, ) =0 + p,e, =6 +y + p,e3 = n; + p. Thus, R, of the model (2.3) is given by

Aaboey

Ry=p(FVhH= (3.8)

KHHLE] (/462 +m @G +u+ w))

3.2.2. Local stability of the DFE of the model
In accordance with Theorem 2 in [38], the result of the local stability of Ea‘ is provided as follows.

Theorem 3.3. The DFE, Ej, given in Eq. (3.7) is locally asymptotically stable if Ry < 1 and unstable if R, > 1.

Biologically, Theorem 3.3 implies that melioidosis infection will eventually diminish in the population if R, < 1 and if the initial
population sizes of the sub-classes (2.3) are within the basin of attraction of Ej. Hence, individuals in the infected population do
not acquire additional infections.

3.2.3. Existence of endemic equilibrium of the model
Let an endemic equilibrium of the system (2.3) be denoted by E} = (S*, E* IT*, R’i‘, R;, P*). Then the components of E; satisfy
the following system:
A= (@ + p)S* =0,
D (S* +mR3) — € E* =0,
OE" +n R} — 1" =0,

3.9
-7yl - e3R’1‘ =0,
Ty = (U + m®@")R; = 0,
ol — u,P* =0,
where, @* = KC:P ;* is the force of infection at the endemic equilibrium. Solving Eq. (2.2) at the endemic equilibrium, for P*, yields
pr= KO (3.10)
a — P*
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At E}, P*>0 and £ < 1, thus a — @* = a(l - P—*) > 0. Substituting (3.10) into the last equation of the system (3.9), gives

K+P* K+P*
*
s o TS0, for @* > 0. (3.11)
o(a — %)

By combining Eq. (3.11) with the fourth and fifth equations of system (3.9), we obtain

R* = Kpp(l — 7)y D"
1 ey0(a — D*)

Kp, Ty D" (3.12)

ola— (15*)(;4 + nzcb*) '

5

R; =

Combining Eq. (3.11), the third equation of (3.9) and the first equation of (3.12), gives

Kﬂh(ﬂ€2 +m (6 +u+ T}’))‘p*

E* = . .1
Oezo(a — D*) (3.13)

Again, solving the first equation of (3.9) for S*, yields
S* = A
D+

(3.14)

Lastly, substituting the Egs. (3.14), (3.13) and the second equation of (3.12) into the second equation of the system (3.9), and
solving for @*, we obtain a third degree equation in @*, given as follows

Py(@*) = @*P,(@*) = 0, where , P,(®*) = A, (®*)? + A, D* + A,. (3.15)
Hence, E? of the melioidosis model (2.3) satisfy the quadratic equation in @* given by

Py(®") = Ay(@*)? + A\ D" + Ay =0, (3.16)
where,

Ag = ki e, (M G+t Ty))(RO —1).(Ag > 0if Ry> 1,4y =0 if Ry = 1,and A, < 0 if Ry < 1),

Ay =—m [A90'63 + K'Mb((l —T)uby + (ub + nye)(p + 6) + p(un, + Tym))] <0, (always)

A = Kupye, <,4e2 G+ u+ T)/))(RO —1) = Afoesp + K, [T79€3ﬂ2 s (,452 G+ u+ Ty))]. (3.17)
From Eq. (3.17) the expression

K€ (,452 FNE Ea Ty))(RO —1) = ABoesp < 0, for Ry < 1. (3.18)

Also, 7yfesn, — € (;462 +m@G+pu+ T}’)) < tybe; — € ([l€2 +n(6+pu+ T}’)) (1ybesn, < 7ybes, for 0 <m, < 1).
But, xup, [1}4963 —-€ (/462 +m@G+pu+ Ty))] = —K'/,l/lb<(1 —T)uly + (Ul + nye)(u + 6) + pu(un, + rynl)) < 0. Thus,

KUy, [1796‘3?]2 —€ (/462 +mE+u+ T]/))] <0. (3.19)

Therefore, from the Eqgs. (3.18) and (3.19), we get A4, <0, for R; < 1.

The existence of the disease persistence equilibrium of the model (2.3) depends on the roots of the quadratic Eq. (3.16). All three
coefficients of P,(®*) are negative for R, < 1. Since the discriminant A% —4AyA, # 0 for R, < 1, equation in (3.16) has two distinct
non-zero roots, say, r; and r,. These roots satisfy the following conditions: rr, = :—2 >0and ry+r, = —i—; < 0. Thus, the two roots
have negative signs, which are not feasible (biologically insignificant) when R, < 1. Moreover, @* = -4 <0 is the only root of
P,(®*) at Ry = 1. As a result, the model has no positive force of infection (feasible solution) for R; < 1. éonsequently, the model
system (2.3) has no positive endemic equilibrium for R, < 1. On the other hand, the coefficient A, > 0 for Ry > 1. In this case, the
discriminant, A% —4AyA, > 0. It follows that, P,(®*) has two different non-zero real roots for R, > 1, that satisfying rr, = % <0.
This indicates that r; and r, have opposite sings. Hence, the model has a unique positive endemic equilibrium for R, > 1 in the
presence of relapse and re-infection. Furthermore, if #, = 0 (in the absence of relapse), the quadratic equation P,(®*) =0 in (3.16)

reduces into a linear equation A7®* + A, = 0 and it has unique solution @* = —% >0if Ry > 1, and @* = —% < 0if Ry < 1, where
1 1

Al =-—p [A00e3 +Kpy€; ( Hey +n(5+u+7y) )| < 0. Therefore, model (2.3) has a unique endemic equilibrium E; for R, > 1 and lacks
any positive endemic equilibrium for R, <'1. This result indicates the absence of a backward bifurcation in both scenarios, with
and without recurrent cases (relapse and re-infection). Unlike the model proposed in this study, other compartmental models with
recurrent cases experience backward bifurcation. From an epidemiological standpoint, eliminating the disease in the population is
possible when R, < 1, while the disease infection will endure within the population if R, > 1. The results can be summarized by
the following theorem.
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Theorem 3.4 (Existence of the Endemic Equilibrium). The model (2.3)
(D has precisely one unique endemic equilibrium in the presence and absence of recurrent when R, > 1,
(i) has no positive endemic equilibrium (in the presence and absence of recurrent) if Ry < 1.

3.2.4. Global stability of the DFE of the model
We use the direct Lyapunov approach given in [39] to prove the global asymptotic stability of Ej. This necessitates a scalar
function IT, (&), ¢ € R®, defined on an open set U, that includes ES and satisfies the following criteria.

) ITy(E) =0,
(i) My >0, for all £ € Uy \ Ey,

(i) £ <0, for all £ € Uy \ E; and “¢

o =0 at Eo'

The global asymptotic stability of E; is established as follows.
Theorem 3.5. The DFE, Ej, given by (3.7) is globally asymptotically stable (GAS) if Ry < 1.

Proof. If Ry < 1, a unique locally asymptotically stable DFE exists according to Theorem 3.3. Consider the following a Lyapunov
function

My=2E+r1+ MR + 4% p
€1 €3 KHpHMy
The time derivative of I, along the model’s solutions is provided as:
m=L2p s Lr A9 p
€] €3 KHUp 1y
= i(<1>(5 +mRy) — elE) +OE+mR, -] + "—‘((1 — oyl - e3Rl) 4 Aad (o‘I - ,4,,P)
€1 €3 KHpHMy
_( 0P _AaHP) nadP R Aafol <ﬂ€2+711(5+,u+1'7))1
(x + P)e Kpm (k+P)e; " kpyue €3
2OP . Mk A Aaboes — kpype; ([462 +m@6+pu+ ry)) (3.20)
=4r S+ R, - —) + I
K€ (K+P k+P 2 U KHpUE €3
(ﬂ€2 +mG+pu+ TY))
=ﬂ( K S+anR2—4)+ (Ry - DI
ke \k + P K+ P " €3
o+ pu+1ty)
abP K A (/462 +m( )
- o8P S +mRy) — —) Ry — I,
Kel(K+P( +mRy) " * €3 (Ro=1)

since the state variables are non-negative, and x < « + P(or FKP < 1),;;R, < R, for 0 < n, < 1), we obtained, H(;(t) <

0P N (u€2+rl1(5+u+ry))
E((S +R,) — ;) + T(RO - DI.

Note that S+ R, < N < % in Uy \ E;. As the model parameters are non-negative, I7)(t) < 0 in Uy \ E, and provided that Ry < 1,
and H(; =0ifand onlyif E=7=R;, =P =0 (or at Eg). Thus, according to Lasalle’s Invariance Principle [39],
(E(t),[(t),Rl(t), P(t)) - (0,0,0,0) as 1 — oo. (3.21)

From (3.21), it follows that, lim, , supE(t) = 0,lim,_ supI(t) = 0,lim,_,, supR;(r) = 0 and lim,_, supP(r) = 0. Using the
approach given in [40,41], for sufficient small number ¢, there exist constants q;,g,,¢; and g, such that lim,_, , SUpE(t) < ¢, Vt >
qy,lim,_, o supI(t) < ¢y Vt > g,,lim,_, o SUpR, () < ¢, V¢ > g3, and lim,_, supP(t) < ¢, V¢ > g4. Thus, from the fifth equation of the
system (2.3), for r > max{q,.¢,, g3, 494}, we have

R’2(t) < tyey — uR,. As a result, by comparison theorem in [42],

R = lim supRy(1) < —~2. (3.22)
t—o0 M
Letting, ¢, — 0 in (3.22), gives
R;" = lim supR,(r) < 0. (3.23)
=00
Furthermore, by using lim,_,  infE(?) = 0,lim,_,, infI(r) = 0,1lim,_, , infR,(¢) = 0, and lim,_, , infP(r) = 0, one can verify that
Ry, = tlirg infR,(r) > 0. (3.24)

From (3.23) and (3.24) it follows that, R? <0< Ry Therefore, R,(t) — 0, regardless of the initial population size R,(0). Likewise,
it can be shown that S(¢) —» % as t — oo.
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As a result, every solution trajectory of the system (2.3), with the initial population size in D, converges to E; as t - co when
R, < 1. Biologically this implies that the susceptible individuals do not acquire additional infections when R, < 1. Therefore, in this
case, the infection can be eradicated from the population over time. []

3.2.5. Global stability of the endemic equilibrium of the model

For R, > 1, there is a single positive endemic equilibrium, E?, for the model (2.3) as stated in Theorem 3.4. The next result
addresses the global asymptotic stability of E* by using a suitable chosen Lyapunov function.

Theorem 3.6. For R, > 1, the endemic equilibrium, E; of the model (2.3) is GAS in D, \ D,, D, :{ (S,E,I,R,R|,P)
E=]=R1=P=O}.

Proof. Consider the following candidate for a Lyapunov function: I7,(S,E,I,R,, R, P) = %((S -SY+(E-E+U-I*)+ (R -

2
R+ (R, - R;)) + 1(P — P*)2, with its time derivative

M= (S +E+T+R +R) = (S + E + I + R + R ) ('O + E'0)+ I')+ Ry () + Ry(0))

(3.25)
+ (P — P*)(P'(1)).
Adding the first five equations of the system (3.9), we obtain
ﬁ—él*=S*+E*+I*+RT+R§. (3.26)
HooHu
Also, from the last equation of the system (3.9), we have
P= 21" < Z(S*+E*+I'+ R} + R)). (3.27)
Hp Hp

Note that N(f) < % in D,. Because the model parameters and variables of infective classes are non-negative, combining Egs. (2.1),
(2.3), (3.4) (3.25), (3.26), and (3.27), yields

= (N(t) - (% - %I*))(A —uN@) - 51(:)) + (P(r) - Mibl*)(al - ﬂbP(Z))

- _<% S N(t))(/l — uN() - 5I(t)> - (”ibl - P(t))(oI - /4,,P(t)>

—(— - N(t))(A - yN(t)) - (Mib(s* +E 4T+ R + R — P(t))(o-] - ,ubP(t)>
—(— - NO)(A-uN®) - (”ib(ﬁ - %I*) = PO) (ol = upP®)
—#(— - N(r))(% N®) - uh(fbf - P(t))(il 20

< M(— —N(r))(ﬁ —N(z)) - (:7” —JP(r))(7 —P(t)) oI < 3 in D))

< —[y(ﬁ —N(t)) +””(:_/Z —P(t)) ] <0.

Thus, I7)(f) < 0 in D; \ Dy when R, > 1. Since IT; is a well-defined candidate for the Lyapunov function in D, and according to
Lasalle’s Invariance Principle [39], we conclude that E* is GAS when R,, > 1. This result indicates that every trajectory of the model
(2.3) solutions with initial population sizes in D, \ Dy, eventually moves towards the respective unique endemic equilibrium, E},
of the model 1 - o for R, > 1. In biological terms, the melioidosis infection will endure within the population.[]

4. Sensitivity analysis

In this section, we perform sensitivity analysis using a normalized forward sensitivity index to identify parameters with high
influence on R,,. This assists in suggesting appropriate control strategies for mitigating the spread of the disease. We utilize the
approach given in [43,44]. The forward sensitivity index of R, with respect to a particular parameter ¢ is provided by

Y= ()aﬁ x 2. (4.1)
P Ry
By using Eq. (4.1), the sensitivity index of parameters of R, is computed and presented in Table 2, ranking from the most influential
parameter to the least. The parameter values from Table 1 are used.

Based on the Table 2 and Fig. 2, the parameters «, 6, A, 6 and , have positive sensitivity index values, indicating a direct influence
of the parameters on the magnitude of R,. In contrast, u,,k, u,5,y have negative Y(f 0 values, showing a reverse impact of the
parameters on R;. Also, we observed that a, o, 41, k are the most influencing parameters on R, (directly or indirectly), as confirmed
in Fig. 2 and Table 2. For example, reducing the value of « or o by ¢% would also reduce the value of R, by the same percentage ¢%.
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Table 2

Sensitivity indices for parameters of R,.
Parameter Value Sensitivity index
a 0.0185 1.0000
o 0.13 1.0000
Hy 0.02 —-1.0000
K 5000 —1.0000
A 1 x N, 1.0000
" —_— -1.0077
3 0.005 —-0.8325
v 0.0037 —-0.1605
0 3 0.0004
i 0.069 0.0003

Sensitivity Value

45 N S N
R P IR
O ()

& ® & T &

Fig. 2. Plot shows sensitivity indices for each parameter of R,.

(a) (®) (©)

Fig. 3. Graphical results showing the impact of the most influencing parameters on Ry; (a) R, vs « and o, (b) Ry, vs « and ,, and (c) R, vs ¢ and u,. The
parameter values given in Table 1 are used.

On the contrary, increasing the value of y, or k by 15% would decrease R, by 13.04632%. Furthermore, the numerical illustration
of the changing effects of parameters a, s and p, on R, can be seen in surface and contour plots refer, Figs. 3 and 4. From Figs. 3(a)
— 3(b) and Figs. 4(a) — 4(b), it is evident that increasing the value of a, will lead to the endemic condition. A similar observation
can be made for the varying impact of « from the plots. On the other hand, R, decreases as the pathogen’s mortality rate increases,
as depicted in Figs. 3(b) — 3(c) and Figs. 4(b) — 4(c). In view of the results of sensitivity analysis, control strategies for « and ¢
will sufficiently reduce the spread of melioidosis. Moreover, a strategy that increases the mortality rate of B. pseudomallei, will be
effective in controlling environment-born melioidosis with recurrent. Consequently, the control efforts could be employed through
prevention measures and treatment for classes of I and R, to mitigate the disease spread within the population for this specific

study.
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Fig. 4. Graphical results showing contour plots of R, in (a) ac plane, (b) ay, plane, and (c) ou, plane.

5. Numerical stability analysis of the equilibria of the model

In this section, we present numerical results for the global dynamics of the autonomous model (2.3) to support the qualitative
analysis of the model. We use the ode45 algorithm in MATLAB to accomplish this. The model parameters used for simulations are
provided in Table 1, and the initial population sizes are set as:

M = (S(0). E0). 1(0). (0. R, (0), Ry(0), P(0)) = (450,50, 20, 10, 5,200). 5.1

So, using the explicit formula in (3.8), the basic reproduction number is found as R, ~ 2.1416. Using Egs. (3.10)-(3.14) and
(3.16) the unique positive disease presence equilibrium of the model is obtained as,

E = (248.9221,0.1092,2.0195,0.0801,44.3091,13.1266) for the unique positive value, @ ~ 4.844118684001455 x 1073, In this
instance, each model solution trajectory moves towards the equilibrium point E over time, as shown in Figs. 6(a) — 6(d). This result
suggests that all infected classes persist in the population. In epidemiological terms, this means that the melioidosis infection will per-
sist in the population for R, > 1. Moreover, the model has the unique positive, E; = (250.4653, 0.1079,1.9961,0.0792,45.5589, 12.9749)
for @ ~ 4.7883 x 107> in the absence of relapse. However, setting the values of the most sensitive parameters as (a, o, Hp, K) =
(0.008,0.09,0.01,7000) yields Ry ~ 0.9159 < 1. As a result, the model has the unique DFE, E(’)k = (4,0, 0,0,0,0), which is globally
asymptotically stable. Therefore, all model solution trajectories move to E; eventually, regardless of the initial population sizes
as shown in Figs. 5(a) — 5(d). From a biological perspective, this suggests that the disease will die out from the population over
time. To eliminate the melioidosis infection disease, it is essential to minimize the value of R, as much as possible by implementing
appropriate intervention strategies. The impact of various control interventions on reducing disease spread is discussed in the optimal
control model section.

5.1. Impact of n, and n, on I(t), R, (t) and R,(1)

The impact of the parameters relapse rate #; and reinfection rate 7, on the dynamics of infectious and recovered (R; and R,)
human populations are illustrated in Figs. 7 and 8. Fig. 7(a) shows that the class of pseudo-recovered humans, R, (¢), decreases over
time as 5, increases. Meanwhile, the population of infectious humans rises as #, increases, as depicted in Fig. 7(b). Likewise, it can
be seen in Figs. 8(a) and 8(b) that R,(¢) decreases as #, rises in value, consequently leading to an increase in the number of infectious
humans. Therefore, these results suggest that appropriate preventive measures for classes of R, (r) and R,(#) should be implemented
to minimize disease recurrence, ultimately leading to a reduction in the infectious human population.

6. Analysis of optimal control model

In this section, an optimal control model for the dynamics of melioidosis with recurrence is formulated by incorporating
the time-dependent control functions. Based on the sensitivity analysis results, the following control measures are considered to
determine effective and cost-effective strategies for eradicating environment-borne melioidosis: w,(f), denotes prevention efforts
like wearing protective footwear and gloves, treating unsafe drinking water, and raising public awareness through information and
education [2,45]; w,(t), represents treatment efforts to prevent relapse using eradicating antibiotics (e.g., TMP-SMX for 140 days,
TMP-SMX plus doxycycline for over 84 days, or TMP-SMX plus doxycycline plus chloramphenicol for more than 84 days [24]);
w3(1), denotes treatment control for I using antibiotics such as ceftazidime, carbapenem, or cefepime. Thus, the model (2.3) with

10
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Fig. 5. Graphical results showing the convergence of solutions of the model (2.3) over time with different initial values to the components of Ej; convergence
of (a) (S,E.I) to (— 0,0) in 3-D, (b) (R,, R,, P) to (0,0,0) in 3-D, (c) S,E,I, R, and R, to = 4.0,0,0, and 0, respectively, in 2-D, (d) P to 0 in 2-D. The parameter
values given in Table 1 are used except a = 0.008,0 = 0.09, y, = 0.01, and x = 7000 (so that R, ~ 09159 < 1).

the presence of these controls is formulated as follows.
S’ =A-(1=-w)®+ S,
E'(t)=(1-w)®(S +mRy) — (0 + WE,
I')=0E+ (1 -wy)mR; —(y + 6+ o0w; + ),
6.1
R’1(1)=(1—r)(7+0w3)l—((l—wz)m+ﬂ)R1, D
R(1) = t(y + ow3)] — (/4 +0- wl)’lz(D)RZ’
P'(t)=(—w))ol — p,P,

subject to the initial conditions: S(0) > 0, E(0) > 0, I(0) > 0, R;(0) > 0, R,(0), and P(0) > 0, where, the coefficient ¢ is the
treatment control rate in infectious class. This problem aims to minimize the infectious human population while keeping the costs
of implementing controls as small as possible. Thus, the objective functional subject to the state system (6.1) is given by

Ty 3
O(a)l,a)z,a)3):/0 WOH%ZW,,wﬁ d, (6.2)

n=1
where, T is the final time, the coefficient W, declares the positive weight constant of I, while W}, W, and Wj are relative cost
positive weights for optimal controls w,,w, and s, respectively. We quantify the cost of each control by considering a quadratic

11
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Fig. 6. Graphical results showing the convergence of solutions of the model (2.3) over time with different initial values to the components of E}; convergence
of (a) (S, E,I) to (248.9221,0.1092,2.0195) in 3-D, (b) (R,, R,, P) to (0.0801,44.3091,13.1266) in 3-D, (c) S, E,I, R, and R, to 248.9221,0.1092,2.0195,0.0801, and
44.3091, respectively, in 2-D, (d) P to 13.1266 in 2-D. The parameter values given in Table 1 are used (so that, R, ~ 2.1416 > 1).

objective function. This is because there is no linear relationship between the intervention’s impact and cost for infective classes.
The quadratic nature of the control cost is consistent with previous literature [46-48]. The goal is to find an optimal control,
= (@}, @5, ®3), satisfying

O(0], @], @3) = inf {O(w;, @, @3) : @1, 0,03 € 2}, (6.3)

where, Q = {(@;(1), w,(1), w3())
n=1,273.
A Hamiltonian H, of the optimal control problem, based on PMP [49] is formulated as follows:

0 < w,(t) <1, t € [0,T;]} is a non-empty control set and each w,(r) is Lebesgue measurable,

3
1
H =Wyl + z W02 + 1, S" (1) + L E'(0) + J31'(t) + J4R) (1) + Js Ry (1) + J P'(0). 6.4)
=1
where, J, (n=1,2,...,6) are the co-state variables corresponding to the state variables.
6.1. Existence of an optimal control

We now establish and prove a result for the existence of the optimal control, »*, that satisfy Eq. (6.3).

12
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Fig. 7. Plots demonstrating the impact of 7, on the populations of (a) infected humans and (b) recovered individuals with relapse (R,).
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Fig. 8. Plots illustrating the effects of the re-infection rate, #,, on the populations of (a) infected humans and (b) recovered individuals with re-infection (R,).

Theorem 6.1. Suppose the objective function O is defined on the control set Q subject to the system (6.1) with non-negative initial
population sizes at t = 0, then there exists an optimal control o* = (co”l‘,w;,w;‘) such that O(w*) = inf{O(w, w,,w3) : @, 0,5, w3 € R}, if
the following conditions given in [50] hold:

(i) The admissible control set is closed and convex,

(i) The state system (6.1) is bounded by a linear function in the state and control variables,
(iii) The Lagrangian of the optimal control in (6.2) is convex with respect to the controls,
(iv) There exist constants k,k, > 0 and k3 > 1 such that the Lagrangian ¢ is bounded below by

N
k, (Z | o, |> — k.
n=1

Proof. (i) Let 2, = {(wl,w2,w3) :0<w, <1,n=1,2,3} be the control set. Then, £, is closed and convex by definition.

(i) Let O = (S,E,I, Ry, R,, P) be the state variables of the optimal system (6.1) and ¥(Q,w) be the right-hand side of the
system (6.1), where, v = (a)l,a)2,a>3)T. Following, the same approach given in [51,52], the system (6.1) can be written as

13
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P(0,w) = ¥,(Q) + ¥,(Q)w, where

P A—(D+ yéS @S 0 0
D(S +mR,y))— 0+ wE —&(S + myRy) 0 0
OE+mRy —(r+6+mwl 0 —nR, ol
YD =| 1 -oyr1 - (,11 + ”)Rl » Q)= 0 mR,  (-oel| (6.5)
Tyl — </4 + n2<I>)R2 DR, 0 Tol
ol — uyP -ol 0 0
Thus, we obtain |7 (Q)|| < [, (Q)l + P2 (Q)lllo|| < max{ Ty, I }(1 + ||o|]), where,
ry=24yva, and 1 =2y, (6.6)
H U
with,
Ay =20 + 217 + 302 + 6% + P (1 + 72 + (1 — )P, and 4) = p? + a(1 +343) + (0 + m)* + 6> + ¥ (7> + (1 — 1)),
(iii) The Lagrangian of the optimal control is given by
I, w) =Wyl +7¢1(w), 6.7)

where, ¢ (w) = % 23:] W,,cug. We need to show that the function #,(w) is convex on the control w. To perform this, define the
function ¢ : 2, — R by ¢(w) = %coz. Let y,z € Q,, with y = (y1,¥,,¥3) and z = (z;,2,,23) and ¢ € [0, 1]. Then, using the idea of
convex set in [53], we need to show

e(Cy+1-0z) <o+ (1 - Oelz), V¢ €10, 1].

Since ¢2 < ¢, V¢ € [0, 1], we obtained

1 1
P(Ey+ (1 -02) = (Co0) + (1 = Oe(2) = 5 (Cy+ (1 - 0z)* - ;@2 +0-07%)
(6.8)
s _2)
= 3@-0(y-z) <o
As a result, the function ¢, () is convex on w.
(iv) The Lagrangian in Eq. (6.7) is the sum of non-negative terms W, I and ¢,(w), the last condition is shown as follow:
L3 L& PV “73
— 2 2 1 2
£ 0) = Wol + 5 2 W, 2 5 Z{ W, 2 = <§ | w, | ) —ky, (6.9)

where, k| = min{W;,W,, W3}, k, >0 and k; =2.[]

Theorem 6.2. Suppose the set o™ = (o], ®};, ®3) minimizes O over 2 subject to the optimal system (6.1), then there exist adjoint variables
J1.Jy, I3, Jy, J5, Jg that satisfying

dr,

e (1 =H)A - 0@+ Jyu,

ah _ (Jy— J3)0 + J.

ar 2 3 2H,

dJ,

i =Wy + J3(y + 6 + 0wy + ) — J4(y + 0w3)(1 — 7) = J5(y + 0w3)T — Jgo(1 — wy),

dJ, (6.10)

e (Jg = J3)(A =)y + Jyp,

dJs

T =Us =) —w)n®+ Jsu,

dJg axS akmp Ry

=L = = D) —w) == + (J5 = I — 0) ——= + uyJg;,

ar ( 1 2)( UJ1)(K+P)2 ( 5 2)( UJ1)(K+P)2 Hpde
and with final time conditions,

J,,(Tf)=0,n= 1,2,...,6. (6.11)
Furthermore, the optimal controls wz k = 1,2,3 that minimizes O over (2 are given by

Jy = J)DS + (J, — J5) PRy + 61 J, Jy—J)n R
(u’l‘=max{0,min{( = Jp) (Jy = J5)@mRy + 0 6,1}}, w;*:max{o,min{wvl}},
Wi W,
J3 = J,(1 —1) = Jst)ol (6.12)
w§ =max{0,min{ 34 570 1}}
w;

14



H.A. Engida Results in Control and Optimization 16 (2024) 100476

Proof. Let y* = (S* E*, I*, R’l‘, R’;, P*) and o* = (w’f,w;,w’;) be corresponding solutions satisfying (6.1) and (6.3), respectively. We
use the standard results presented in [54] to derive the adjoint system and the optimal control. With the help of PMP [54], the adjoint
system is determined by taking the negative of the derivative of H (6.4) with respect to associated state variables S, E, I, R, R,, P
respectively:

_dh oM _dh _oH )y _om  _dh_om _dJs_om _dly_on

==, - =—, - =—, - =—, - =—, - =—, (6.13)
dt A dt o0E dt ol dt JR, dt JR, dt oP
with J,(T)=0,n=1,2,...,6. Lastly, to find optimal controls in the interior of the control set £, we employ
ﬂ =0, for w;, k=1,2,3. (6.14)
dwy

Solving Eq. (6.14) for each optimal control co’l“,a)’zk and w; gives the relation which is the same as given in (6.12). []
6.2. Numerical simulations

This section presents numerical simulations of the optimality system, comprising the state system (6.1), co-state system (6.10)
with its final conditions (6.11) and the characterization of the optimal controls (6.12) for the melioidosis model. To demonstrate this,
we use the forward-backward sweep method in MATLAB [55]. We set the tolerance to z = 0.0001, to reduce the error. The aim is to
illustrate the most effective and cost-effective control strategies for mitigating the spread of the disease. The parameter values used
in the simulations are listed in Table 1, while the initial population sizes for each class are given in Eq. (5.1). Moreover, the weight
constant of the infectious class is W, = 10 and weight constant values for the controls are assumed as; w; = 10, w, = 10, w; = 20.
The treatment control rate is ¢ = 0.75. The choice of the treatment control rate is based on the relapse rates of melioidosis infection,
ranging from 13% to 23% in patients [22,56].

The numerical experiments of the optimality system are performed to assess the effectiveness of seven different optimal control
strategies, which are grouped into three scenarios as follows:

Scenario I: Optimal use of single control:

Strategy A: impact of prevention control (w; # 0,0, = w3 = 0),
Strategy B: impact of relapse preventive effort R; (w, # 0,0, = w3 =0),
Strategy C: impact of treatment control of R, (w3 # 0,w, = w; = 0).

Scenario II: Optimal use of double controls:

Strategy D: Combination of optimal controls w; and ,,
Strategy E: Combination of optimal controls w, and ws,
Strategy F: Combination of optimal controls @, and ws.

Scenario III: Optimal use of all controls:
Strategy G: Combination of the optimal controls, w,,w,, and w;.

6.2.1. Scenario I: Optimal use of single control

This scenario compares the effectiveness of the optimal strategies A, B and C on classes of I and P. The numerical results of
this scenario are depicted in Fig. 9 and Table 3. Fig. 9(a) and Table 3 illustrate that strategy C has the highest number of infectious
averted followed by strategy A, then strategy B. Similarly, Fig. 9(b), shows that strategy C is the most effective to eliminate the
pathogen population in the environment compared to strategies A and B. Furthermore, the optimal control profiles for the three
strategies are given in Figs. 10 (a) — 10(c). The control profile for strategy A shows that the prevention effort w; should be maintained
at the upper bound (100%) for the first 135.5 days and then reduced to zero (lower bound) for the rest of the simulation period,
as depicted in Fig. 10(a). The control profile of strategy B in Fig. 10(b) illustrates that the optimal control w, is consistently at the
upper bound throughout the entire intervention period (for 200 days). The control profile for strategy C is revealed in Fig. 10(c),
where it is observed that the control was at maximum effort for 82.6 days before reducing to the lower bound.

6.2.2. Scenario II: Optimal use of double controls

In this scenario, we implement the optimal strategies D, E and F to compare their effectiveness. The simulation results of this
scenario are shown in Fig. 11. As depicted in Figs. 11(a) and 11(b) the number of infectious individuals and the size of the bacterial
population decrease more rapidly when implementing strategies D, E and F compare to the case without strategies. However,
strategy F leads to a greater decrease in the size of I compared to strategies D and E, as confirmed in Fig. 11(a) and Table 3. A
similar result is evident in Fig. 11(b) for the bacterial class. Furthermore, the optimal control profiles in these strategies are given in
Figs. 12(a) — 12(c). The control profile of strategy D in Fig. 12(a) shows that the preventive measure w, should be maintained at the
maximum effort for the first 134 days and subsequently it should be gradually reduced to lower bound for the rest of the simulation
time, while the control w, is maintained at 100% throughout the entire intervention period. Likewise, the control profile of strategy
F in Fig. 12(c) shows that the control w, should be maintained at the maximum effort for the first 15 days and subsequently it should
be gradually reduced to lower bound for the rest of the simulation time, while the control »; is maintained at 100% throughout
the entire intervention period. The control profile of strategy E in Fig. 12(b) reveals that the controls w; and w; maintain the upper
bound for the first 27 and 66 days, respectively before lowering gradually to zero rapidly in the rest of simulation period.
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6.2.3. Scenario III: Optimal use of all optimal controls

In this scenario, we implement all the control functions w,,w, and w;. The graphical results of this scenario are illustrated
in Fig. 13. Figs. 13(a) and 13(b) indicate that the number of infected humans (E and I) and the pathogen population decrease
significantly when strategy G is used, while the populations of infectious humans (/) and pathogens increase in the absence of this
strategy throughout simulation time. The control profiles of the last scenario are depicted in Fig. 13(c). In Fig. 13(c), it can be seen
that control w; are kept at 100% for 13.2 days before gradually declining to zero by the end. While control w, rises from 44.5% to
50% before gradually decreasing to zero at the end of the simulation period. Meanwhile, the control w, is consistently at maximum
effort 100% throughout the entire intervention period, as revealed in Fig. 13(c).

6.2.4. Comparison of the most effective strategies

Based on the results illustrated under scenarios I — 111, we compare the effectiveness of strategies C, F and G to determine the
most effective among them in mitigating the spread of melioidosis with recurrence. The graphical comparison results are presented
in Fig. 14. As depicted in Fig. 14(a), the number of susceptible individuals in the population decreases more rapidly in the absence
of strategies C, F and G than the number of susceptible individuals in the presence of the strategies throughout the simulation
period. However, strategy G minimizes the number of susceptible individuals getting infected by melioidosis more effectively than
strategies B and C, as observed in Fig. 14(a). Likewise, from Fig. 14(b), Fig. 15 and Table 3, we noticed that strategy G has the
highest number of infected averted individuals, followed by strategy F and then strategy C. The findings from Fig. 14(c) also indicate
a similar outcome for the bacterial class. Arising from the numerical results in Figs. 14 (a) - (¢), we conclude that strategy G is the
most prominent in reducing environmental-borne melioidosis in the population, regardless of the control costs. Thus, public health
centers and policymakers should prioritize implementing a strategy that combines three control measures ,, ®, and w; to diminish
the impact of melioidosis in the community.

6.3. Cost-effectiveness analysis
This section presents a cost-effectiveness analysis to identify the most cost-effective strategy among optimal strategies imple-
mented in the previous section. To perform this, we employ two approaches; the average cost-effectiveness ratio (ACER) and the

incremental cost-effectiveness ratio (ICER) in the sense of [34,41,57,58].
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and (c) the disease’s pathogen.

Table 3
Increasing order of infection averted, Total cost and ACER.

Strategy Infection averted Total cost ($) ACER

B 19124 4996.6 0.2613
A 32551 4192.9 0.1288
D 44570 9048.6 0.2030
C 74751.3 7603.3 0.1017
E 75074.7 8307.7 0.1107
F 76549.6391 7317 0.0956
G 76611.7 7463.8 0.0974

The ACER quantifies one strategy to its baseline option. This ratio for a particular strategy ¢ is calculated as:

Total i b
ACER( ¢ ) = otal cost incurred by ¢

. 6.15
Total number of infection averted by strategy ¢ ¢ )

where, numerator of (6.15) is estimated from

3

200

1

c,= E/0 <Z an5>m, and 6.16)
n=1

the total number of infections averted is calculated by subtracting the number of infectious humans with control from the number

of infectious humans without control. Therefore, the total number of infections averted (/,,,,) during the intervention period is
estimated as follows:

200 200
I,omz=/0 I(t)dr—/o I*(1dt, (6.17)

with, /0200 1(t)dt represents the total number of infectious cases without control over [0,200], and /0200 I*(t)dt denotes the total
number of infectious humans with control. The total cost for each of the strategies A — G is obtained using Eq. (6.16) and is given in
the third column of Table 3 and in percentage by pie chart in Fig. 16. While I, for the strategies is computed using Eq. (6.17) and
is listed in the second column of Table 3 in increasing order of I,,,,. The ACER for optimal strategies is computed using Eq. (6.15)
and presented in the 4th column of Table 3. Based on this approach, the strategy with the lowest ACER value is considered the most
cost-effective. Therefore, the ACER values in Table 3 and Fig. 17 indicate that strategy F, with the smallest ACER value, is the most
cost-effective strategy. This result is further supported by calculating the ICER values for the control strategies.

The second method, ICER, involves comparing the incremental difference in costs and health outcomes between two alternative
intervention strategies that are competing for the same resources. The ICER value for two strategies .S, and S, is calculated as
follows:

Change in total intervention costs in strategies S, and S,

ICER = .
Change in the total number of infections averted in strategies S| and S,

(6.18)

The implemented strategies are ranked according to their increasing order of I,,,, as shown in the second columns of Table 3. Based
on the ICER approach, the strategy to be removed from the list of alternative strategies at each step corresponds to the largest ICER
value.

We use Eq. (6.18) to calculate the ICER for strategies B and A and compare the values as follows:

ICER(B) = 49966-0 _ 0.2613, ICER(A) = 4192.9 - 49966 _ —0.0599. (6.19)
19124 - 0 32551 — 19124
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In (6.19)ICER(A) is less than ICER(B), indicating that strategy B strongly dominated by strategy A. Thus, strategy A is less expensive
and more effective than strategy B. As a result, strategies A and D are compared instead of strategy B, which is excluded from the
roster of intervention strategies.

41929 -0 9048.6 — 4192.9
ICER(A) = ——— =10.1288, ICER(D) = ——————— = 0.4040. 6.20
(A) 32551 -0 (D) 44570 — 32551 ( )
Comparing ICER values in (6.20), the result indicates that strategy D is more costly than strategy A as ICER(D) > ICER(A). Thus,

strategy D is removed from the list of alternative interventions. Hence, strategies A and C are compared.

41929 -0 7603.3 — 4192.9
ICER(A) = ———— =10.1288, ICER(C) = ———— = 0.0808. 6.21
(A) 32551-0 © 74751.3 — 32551 ( )
The comparison in (6.21) shows that ICER(A) > ICER(C), as a result, strategy C is less expensive than strategy A and should be

eliminated from the list of alternative interventions. We compare strategies C and E.

7603.3 — 0 8307.7 — 7603.3

ICER(C) = 45130 = 0.1017, ICER(E) = 750747 747513 — 2.1781. (6.22)
From Eq. (6.22), it can be seen that ICER(E) > ICER(C), shows that strategy C dominates strategy E. Thus, strategy E is more
expensive than strategy C. Consequently, strategy E is excluded from the list of alternative interventions. We compare strategies
F & C as follow:

7603.3 -0 7317 —7603.3

ICE =-————=0.1017, ICER(F)= = —0.1600. .2
CER(C) 747513 -0 0 CERG) 76549.6391 — 74751.3 01600 (6.23)
It is evident from (6.23) that strategy C is more costly than strategy F. Consequently, strategies F & G are compared as follow:
7317-0 7463.8 — 7317
ICER(F) = ——— = 0.l , ICE = = 2.3654. 2
CER(F) 76549.6397 — 0 0.0956,  ICER(G) 76611.7 — 76549.6397 365 (6.24)

Finally, the values of ICER in (6.24) indicate that strategy F is less costly than strategy G. Consequently, strategy G is removed
from the list of alternative interventions. Hence, strategy F (combination of optimal controls w, and w;) is the most cost-effective
among all implemented strategies. This outcome agrees with the results of ACER given in Table 3. This suggests that melioidosis
infection with recurrent can be eliminated with minimal intervention costs by providing treatment control for the infectious class
and implementing efforts to prevent the disease relapse.
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7. Conclusion

In this paper, a compartmental model of environmental-born human melioidosis dynamics with recurrent phenomena has been
proposed and rigorously analyzed. The analysis of the formulated model has been performed in two parts: global stability and
sensitivity analysis of the autonomous melioidosis model, and optimal control problem analysis of the model with time-dependent
control functions. The basic reproduction number (R;) of the model was obtained based on the method of the next-generation
matrix. The proposed model has two unique equilibria: one is disease-free (DFE) and the other is disease-presence equilibrium (E?).
Global asymptotic stability of the model’s equilibria were examined using appropriate Lyapunov functions. It is shown that DFE
is globally asymptotically stable when R, < 1, regardless of the presence or absence of disease recurrence. Whereas, the unique
endemic equilibrium is globally asymptotically stable if R, exceeds unity, again in both the presence and absence of relapse and
re-infection. Thus, the system (2.3) does not exhibit backward bifurcation phenomena with or without recurrence. This suggests
that melioidosis infection can be eradicated in the population when R is less than one. Moreover, numerical results for the global
stability of equilibria were carried out to reinforce the analytical analysis of the autonomous model using the ode45 algorithm in
MATLAB. It is observed that the model solutions converge to DFE (or EY¥) when the basic reproduction number is less than (or
greater than) one, respectively, as depicted in Figs. 5 and 6.

Next, we have formulated an optimal control problem by including three control functions: prevention effort w,(r), treatment
control w,(7) for the infectious class, and relapse-preventing measures using eradicating antibiotics w;(f). Pontryagin’s maximum
principle has been employed to obtain the necessary conditions for the optimal control problem. Numerical experiments on the
non-autonomous model are conducted in three scenarios (I — I IT) to evaluate the effectiveness of seven different control strategies
(A — G). From simulation results, we noticed that implementing all controls w;,w, and w; simultaneously is the most effective
strategy in reducing the transmission of melioidosis in the population, as shown in Figs. 10-15 and in Table 3. Meanwhile, the
quantitative results from cost-effectiveness analysis indicated that implementing the combination of two controls w, and w; is the
most cost-effective optimal strategy to minimize the disease spread with recurrent in the community, as confirmed by ICER values
in Egs. (6.19)—(6.24), and ACER values in Table 3 and in Fig. 17.

In this paper, disease transmission between humans and animals for the formulated model has not been taken into account.
Although the effect of animals on disease transmission is uncommon, the impact of transmission between humans and animals on
infection rates can be considered. Also, the seasonal factor’s effects have not been taken into account. A more general model can
be proposed, incorporating the impact of seasonal factors on melioidosis to provide more insight into the disease’s transmission.
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