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A B S T R A C T

Extreme flood and drought events arise from temporal and spatial variations in the Earth’s water cycle, signif
icantly affecting water resources and the environment. This review aimed to evaluate the effects of climate 
variabilities on extreme flood and drought events within the Blue Nile Basin. A systematic literature review and 
content analysis were conducted to understand the hydrological dynamics of floods and droughts. A Scopus 
database was used to find relevant literature review articles related to flood and drought extreme events using 
search terms queries. The findings suggest that rising temperatures and fluctuating precipitation patterns are 
leading to more frequent and severe floods and droughts. Future projections also suggest increased drought 
severity in most basin areas, coupled with more frequent floods. Fluctuations between dry and wet conditions 
have intensified these extremes. While insufficient rainfall triggers droughts, excessive and concentrated rainfall 
contributes to floods. The wet projection shows more frequent floods, while the dry projection indicates severe 
droughts throughout most of the basin. This review provides a valuable starting point for further action towards a 
more climate-resilient and water-secure for sustainable environmental development and management over the 
basin.

1. Introduction

The Blue Nile River Basin (BNRB) is a vital water resource shared by 
Ethiopia and Sudan (Taye et al., 2015). The basin plays a crucial role in 
sustaining life and livelihoods in northwestern Ethiopia. The Blue Nile 
River is the largest contributor to the Nile River, providing 

approximately 60% of its annual flow (Senay et al., 2014). BNRB is a 
critical freshwater resource, significantly influencing global water 
resource patterns due to its substantial contribution to the Nile River’s 
flow and its role in regional hydrology. Its contribution is significantly 
influencing hydrology, climate, water management, agriculture, energy 
production, and ecosystem health in the region (Ingrao et al., 2023; 
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Tariku et al., 2021). The basin generates about 50 billion cubic meters of 
water annually at the Ethio-Sudan border (Abtew and Dessu, 2019), and 
It is the principal tributary of the Nile, providing 62% of the flow 
reaching Aswan, Egypt (Awulachew et al., 2011). The resource also 
sustains millions of people in Ethiopia, Egypt, and Sudan and supports 
agriculture and hydropower production. However, the basin is vulner
able to flood and drought extremes (hydrological extremes), including 
devastating floods and crippling droughts, which have been exacerbated 
by climate change (Taye et al., 2015). The basin experienced significant 
seasonal rainfall that caused damaging floods in the downstream area, as 
well as variations in rainfall that led to periods of drought that could 
hurt livelihoods and agricultural output (Tenagashaw and Andualem, 
2022; Zaroug et al., 2014). Climate variability aggravates these ex
tremes, potentially leading to more frequent and intense hydrological 
extremes (Lazin et al., 2023; Tedla et al., 2022a). The effect of climate 
change also threatens the livelihood of indigenous communities living in 
fragile ecosystems (Hazarika et al., 2024). Rangeland degradation is a 
major issue for Ethiopian pastoralists as a result of climate change and 
other related environmental issues (Daba and Mammo, 2024). The 
improved forecasting of floods and droughts is crucial for mitigating the 
impact of these extremes and ensuring the sustainable use of environ
ments in the basin.

The BNB water resource is unevenly distributed and fluctuates 
significantly throughout the year, impacting agriculture, food security, 
and international relations. The basin’s predictable water flow is 
essential for irrigating vast swathes of land, ensuring agricultural pro
ductivity and food security for millions (Yenehun et al., 2021). The basin 
experiences significant seasonal and annual fluctuations in water 
availability. While the basin boasts a high average flow due to Ethiopian 
highlands rainfall (Yenehun et al., 2021), significant variations occurred 
spatially and temporally (Abate et al., 2015). High and low flow occur 
during the rainy and dry seasons, respectively in the basin (McCartney 
et al., 2013). The distribution of water resources within the BNB is 
highly uneven; specifically, the upper parts of the basin have abundant 
water resources compared to the lower region. Lake Tana, the source of 
the BNB, plays a crucial role in regulating the water resource flow. 
However, evaporation from the lake has a significant, impact on 
downstream water availability (Yenehun et al., 2021). However, 
balancing the needs of these countries for agriculture, hydropower, and 
drinking water is a major challenge (Whittington et al., 2005). Climate 
change projections suggest potential alterations in rainfall patterns 
within the basin, potentially impacting the Blue Nile’s long-term water 
availability (Abate et al., 2015).

Flood and drought extremes encompass natural events that signifi
cantly alter the water resources of a basin (Wang et al., 2022). Natural 
and human systems may suffer as a result of the increased frequency and 
intensity of these events brought on by climate change (Kassaye et al., 
2024; Malede et al., 2024). Floods cause loss of life, property damage, 
disruption of infrastructure and economic activity (Wang et al., 2022). 
Furthermore, floods can contaminate freshwater supplies and accelerate 
soil erosion (Spalevic et al., 2020). In contrast, droughts lead to water 
scarcity, impacting agriculture, hydropower generation, and ecosystems 
(Kassaye et al., 2024). Droughts can also exacerbate desertification and 
the risk of wildfires (Di Baldassarre et al., 2016). The frequency, in
tensity, and duration of flood and drought events are driven by varia
tions in climate, human interventions, and atmospheric conditions 
(Ekolu et al., 2022; Kassaye et al., 2024). Rapid water level increases due 
to heavy precipitation, leading to land inundation, population 
displacement, and infrastructure damage (Zaroug et al., 2014), while, 
extended periods with below-average rainfall, result in water scarcity, 
crop failure, and food insecurity. As the climate continues to change, 
understanding and managing flood and drought events will be critical 
for ensuring the sustainability of our water resources and societies 
(Brunner et al., 2021; Marengo and Espinoza, 2016). Previous studies 
have shown that under a warming scenario, around 37% of global land 
areas will experience an increase in flood intensity, whereas 43% will 

experience an increased drought intensity in the 21st century (Matano 
et al., 2023). About 10% of the world, which is highly populated, faces 
the risk of experiencing simultaneous increases in the frequency of both 
floods and droughts (Asadieh and Krakauer, 2017). These hydrological 
extremes directly and indirectly impact humans, including displacement 
and emerging refugee crises (Güneralp et al., 2015).

Despite the interconnectedness of floods and droughts, they have 
traditionally been studied and managed separately. However, a 
comprehensive understanding of both events is crucial for developing 
effective adaptation and management strategies. For example, a severe 
drought can lead to drier soils that are less able to absorb heavy rainfall, 
potentially causing worse floods. Thus, research is needed to develop 
integrated flood-drought management strategies that consider both 
events together (Fasihi et al., 2021). Additionally, little is known about 
how climate change affects the frequency and severity of floods and 
droughts extremes. A more comprehensive understanding of how factors 
like rising temperatures and changing precipitation patterns will spe
cifically affect flood and drought events in the BNB is needed (Gelete 
et al., 2020). There might be a need for improved current methods to 
assess and predict droughts specific to the BNB’s hydrological conditions 
(Ali et al., 2019). Therefore, evaluating the patterns and causes of flood 
and drought events is essential for overseeing the water resources 
throughout the entire Nile basin (Malede et al., 2022; Setegn et al., 
2014). Furthermore, the basin is critical to the agricultural sectors of 
Ethiopia and Sudan since it supports irrigation and provides water for 
crop development (Awulachew et al., 2013). However, during the rainy 
season, soil erosion occurs in hilly regions, leading to loss of agricultural 
production and excessive sediments (Spalevic et al., 2020). Integrated 
water resources management among the shared countries requires a 
thorough understanding of flood and drought events (Davis, 2007).

The purpose of this review is to understand how a changing climate 
influences flood and drought extreme events in the BNB. Water security 
in the basin is seriously threatened by climate change. Hence, reviewing 
the impact of past and projected climate changes on flood and drought 
extreme events helps us to understand the evolving risks (McCartney 
et al., 2013). In this review, the consistency and discrepancies of 
research findings in flood and drought extremes have been addressed 
and examined. Reviewing existing studies into flood and drought ex
tremes in the BNB helps to identify areas where further investigation is 
needed to improve our understanding and predictive capabilities. 
Therefore, the objective of this review is to assess the impacts of climate 
change on flood and drought extremes in the BNB by examining past and 
projected changes, identifying knowledge gaps, and informing policy
makers and the sustainable development of effective adaptation strate
gies. This involves reviewing how rising temperatures, shifting rainfall 
patterns, and erratic weather events are influencing the frequency and 
intensity of floods and droughts spatially and temporarily. By under
standing the evolving risks posed by a warming climate, researchers and 
policymakers can work together to build resilience and ensure the sus
tainable development and management of this vital water resource.

2. Description of the Blue Nile Basin

The BNB is a critical hydrological system situated in the north
western Ethiopian plateau. As the most substantial tributary of the Nile 
River, it contributes approximately 60% of the river’s total flow and 
covers an expansive area of around 176,000 km2 (Samy et al., 2019). 
The BNB comes from Lake Tana, which is located between elevation 
ranges dramatically from 4023 m in the Ethiopian highlands to 382 m 
near the Sudanese border (Fig. 1). The headwaters of the Blue Nile River 
start at Lake Tana, which is in Ethiopia (Mohamed et al., 2022). Origi
nating from Lake Tana in Ethiopia, the Blue Nile traverses through a 
series of gorges and rapids before joining the White Nile at Khartoum, 
Sudan, to form the main Nile River. Geographically, the BNB spans 
latitudes 7◦0.71′N to 16◦0.01′N and longitudes 32◦0.40′E to 39◦0.81′E 
(Fig. 1). The geography of the basin is varied, with hills located in the 
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northern section and lowlands in the western and southern sections 
(Gebremicael et al., 2013).

The BNB experiences a distinct wet and dry season pattern (Ali et al., 
2022). The primary rainy season occurs from June to September, 
contributing the majority of annual rainfall (Samy et al., 2019). Between 
March and May, there could be a short rainy season. The dry season 
typically spans from October to February, characterized by minimal 
precipitation. Rainfall distribution is uneven across the basin, with the 
southern highlands receiving over 2000 mm annually, while the 
northeastern regions experience significantly less rainfall, averaging 
around 800 mm. This creates a gradient of precipitation within the basin 
(Setegn et al., 2011). Global climate patterns like ENSO significantly 
impact rainfall in the Blue Nile. El Niño events tend to suppress rainfall, 
leading to drier conditions. Conversely, La Niña events can sometimes 
bring increased precipitation (Samy et al., 2019).

The basin’s hydrology is highly dynamic, influenced by factors such 
as topography, rainfall patterns, and global climate phenomena like El 
Niño-Southern Oscillation (ENSO) (Hurni, 2010). The steep terrain and 
intense rainfall during the monsoon season make the BNB prone to flash 
floods. There has been a recent increase in the frequency and size of both 
droughts and floods in the BNB (El-Mahdy et al., 2021). Additionally, 
prolonged droughts have increased in frequency, negatively impacting 
the agricultural system (Mohamed et al., 2022). The basin also experi
enced three extreme major floods in 1988, 2006, and 2007, which were 
caused by complex, and heavy rainfall factors (Gelete et al., 2020). 
These climatic and hydrological characteristics underscore the BNB’s 
vulnerability to hydrological extremes, making it a crucial region for 
studying the impacts of climate change on water resources.

3. Methods and data

A comprehensive systematic review and content analysis approach 
was employed to gather and analyze existing research on flood and 
drought extreme events within the BNB. Based on systematic review and 
content analysis (Ioana-Toroimac, 2018; Khirfan et al., 2020), we could 
extract and analyze information from a wide range of published articles. 
This methodology has been successfully applied in previous studies 
(Brunner et al., 2021; Hasan et al., 2018; Malede et al., 2022). Scopus is 
a comprehensive database encompassing a vast array of peer-reviewed 

literature, we acknowledge the possibility of missing relevant publica
tions from other sources. To ensure a comprehensive literature review, 
we initially conducted preliminary searches in Google Scholar and Web 
of Science. Our findings indicated that a significant portion of the most 
relevant and impactful literature was readily available within the Scopus 
database. The Scopus database was queried using a combination of 
keywords related to floods, droughts, and the Blue Nile Basin 
(TITLE-ABS-KEY((flood) OR (inundation) OR (overflow) OR (“hydrologi
cal extremes”) OR (drought) OR (“ dry period”) OR (“ shortage of water”) 
AND (“Blue Nile " OR “upper Blue Nile " OR “Abbay " OR “Abay” OR 
“Nile")). This search initially obtained 2248 publications, including 
book chapters, research articles, review articles, and conference ab
stracts. The relevant information (authors, title, source, publication 
year, affiliation, abstract, keywords, and document type) was extracted 
into a CSV format.

After thoroughly reviewing publication titles, abstracts, and full text, 
we excluded irrelevant materials, such as studies undertaken outside of 
the basin and materials unrelated to flood and drought hydrological 
extremes, had no obvious link to the hydrological effects of floods and 
droughts, and concentrated on the non-hydrological effects of floods and 
droughts. This evaluation, which focused on observed hydrological ex
tremes, excluded studies that did not have a connection to observed data 
or particular conditions within the BNRB, or those were grey literature 
or publications with insufficient peer review or methodological depth. 
In addition, the analysis did not include publications produced in lan
guages other than English.

Fig. 2 shows the steps involved in searching for relevant articles in 
the database. The flowchart starts with an initial search in the database, 
which yields 1248 articles. Then, articles are excluded based on pre
defined screening criteria, including duplicates, old literature, language, 
and document type. This reduces the number of articles to 783. After this 
initial filtering, a further 243 articles are excluded due to a lack of in
formation. Then, an additional 17 articles are removed because they 
have inadequate details regarding the methods used in the studies. 
Finally, the process concludes with 205 articles selected for detailed 
analysis. In addition to the database search methods, we also employed 
the “snowball” strategy, known for its effectiveness, to uncover addi
tional literature. This strategy involves searching reference lists of 
existing research papers to identify new relevant sources and exploring 

Fig. 1. Location of Blue Nile Basin showing elevation difference, Blue Nile River and Lakes.
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papers that cite the paper under study (Vassar et al., 2016).

4. Publication trends and distribution

The publication trend and distribution in the BNB regarding flooding 
and drought extreme events are becoming more frequent. Fig. 3 illus
trates the distribution of relevant articles recovered during 1990–2023, 
focusing on flood and drought extremes. There are vertical bars for each 

year between 1990 and 2023. The height of each bar represents the 
number of articles published in that year. Before 2010, the annual 
publication count for articles in this field was less than five. However, 
after 2010, there was a significant increasing trend in published articles, 
with the most articles published in 2019. There is a slight decrease in the 
number of articles published in 2023 compared to 2020. The number of 
articles published has increased recently, reaching about 20 articles per 
year. The increase in publications is attributed to the expansion of 
higher education, graduate program requirements for publication, and 
the rising frequency of flood and drought events (Taye et al., 2023).

Table 1 shows the main journal sources along with frequently used 
keywords that appear in articles from various sources. The most frequent 
word is “Drought” which appears 80 times in articles from the Journal of 
Hydrology and Earth System Sciences, which contributed the highest 
number of publications. Other frequent words are “Climate change” (62 
times), “Nile basin” (59 times), “Runoff” (40 times), “Blue Nile basin” 
(39 times), “Rivers” (38 times), “Rain” (35 times), “Nile River” (31 
times), “Hydrology” (30 times), and “Floods” (28 times).

The sources of journals listed in the table include Hydrology and 
Earth System Sciences the first, the Journal of Hydrology second, Water 
(Switzerland) third, Extreme Hydrology and Climate Variability: 

Fig. 2. Flowchart of the selected papers, where N stands for the number 
of articles.

Fig. 3. The overall distribution of publications that were reviewed between 1990 and 2023.

Table 1 
Most relevant sources and frequent words.

Words Occurrences Sources Articles

Drought 80 Hydrology and Earth System Sciences 14
Climate 

change
62 Journal of Hydrology 9

Nile basin 59 Water (Switzerland) 8
Runoff 40 Extreme Hydrology and Climate 

Variability: Monitoring, Modelling, 
Adaptation and Mitigation

5

Blue Nile 
basin

39 Advances in Meteorology 4

Rivers 38 Hydrological Processes 8
Rain 35 Quaternary Science Reviews 6
Nile river 31 Science of the Total Environment 5
Hydrology 30 El Nino: Historical and Paleoclimatic 

Aspects of the Southern Oscillation
5

Floods 28 Heliyon 5
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Monitoring, Modelling, Adaptation and Mitigation fourth, Advances in 
Meteorology fifth, Hydrological Processes Sith, Quaternary Science 
Reviews seventh, and Science of the Total Environment eighth, and 
Heliyon ninth. This demonstrated that the majority of publications 
related to floods and droughts were published in hydrology and water- 
related journals. Fig. 4 demonstrates the Bibliometric analysis of 
collected published articles using keywords that provide for various 
routines from the Scopus database.

Table 2 displays the number of articles published by the five different 
publishers. It showed the majority of the articles used in the review were 
published by Elsevier, Springer, or MDPI. These three publishers 
contributed 84% of the articles used in the review. Elsevier provided 
37% of the published works, while Springer and MDPI contributed 27% 
and 19% respectively (Table 2).

A co-occurrence plot of flood and drought information from 1990 to 
2013 is displayed in Fig. 4 of the BNB. An “open-source bibliometrix R- 
package” program or software was utilized to map and evaluate Fig. 4, 
which created using the chosen literature associated with the studies of 
theme keywords (Aria and Cuccurullo, 2017). Bibliometrix is an 
open-source R-package designed for comprehensive bibliometric ana
lyses, supporting a recommended workflow for science mapping. It fa
cilitates data loading, analysis, and visualization, integrating effectively 
with other R-packages, and making it adaptable for evolving biblio
metric needs. The plots are visualizations of how often words or phrases 
appear together or interrelated. For instance, precipitation affects how 
much water is in the BNB. Climate can affect precipitation patterns, 
which can in turn affect runoff and food security. It also helps re
searchers see how the frequency of these terms changed together 
throughout the research period (1990–2023).

5. Climate change trends in the Blue Nile Basin

5.1. Historical precipitation and temperature changes

Temperature and precipitation patterns in the BNB have changed 
significantly during the past century. For instance, a study by Mohamed 
and El-Mahdy (2021) showed that during the 68-year study period, 
there has been an increase in the BNB’s maximum and minimum tem
peratures. It was discovered that the minimum and maximum temper
atures increased by 0.037 and 0.025 ◦C per ten years, respectively. 
Furthermore, a study conducted from 1981 to 2010 found that 
maximum temperatures grew by 0.1 ◦C every decade, while minimum 
temperatures rose at a pace of 0.15 ◦C per decade (Mengistu et al., 
2014). The annual and seasonal maximum and minimum temperature 
extreme indices showed a warming trend (Ali et al., 2022). Historical 
temperature findings highlight a consistent increase across various 
studies in the BNB.

Historical rainfall changes in the BNB reveal significant variability 
and trends. Some areas experience increasing rainfall patterns, while 
others face a decreasing trend. For example, a study by Mohamed et al. 
(2022) revealed that long-term investigations conducted between 1950 
and 2018 revealed a notable decrease in seasonal and annual rainfall, 
especially during the Kiremt (rainy) season, with the frequency of 
drought events increasing. Additionally, analyses from 1981 to 2018 
corroborate the above findings, indicating high inter-annual variability 
and a slight overall increase in annual rainfall, although winter rainfall 
trends are decreasing (Ayehu et al., 2021). Samy et al. (2019) also find a 
significant increasing trend in annual rainfall in the basin’s eastern area 
and a significant decrease in the southwestern part. Overall, historical 
rainfall collectively highlights the complex interaction of increasing 
extreme rainfall events and decreasing seasonal averages in the basin. 
Table 3 presents a compilation of studies investigating historical rainfall 
and temperature trends in the BNB. The table summarizes key findings 
from different research projects conducted in various parts. In general, 
the majority of research shows that the BNB is clearly trending upward 
in terms of both maximum and lowest temperatures. Rainfall patterns 
are inconsistent, some studies show increasing rainfall, while others 
report decreasing trends or high variability.

5.2. Projected precipitation and temperature changes

The future of the BNB’s climate is uncertain, but projections point 
towards a trend of increasing temperatures and changes in precipitation 
patterns (Getachew and Manjunatha, 2021; Mohamed et al., 2022). 
Many studies predict that temperatures will rise across the basin 
(Mengistu et al., 2021; Takele et al., 2022; Wedajo et al., 2024). For 
example, a study by Worqlul et al. (2018) forecasts that the minimum 
and maximum temperatures will increase by 3.6 ◦C and 2.4 ◦C, respec
tively, by the end of the twenty-first century. In a similar vein, Chakilu 
et al. (2023) recorded the greatest monthly temperature variation in the 
2080s, with maximum temperatures varying from 2.93 ◦C to 5.17 ◦C. 
The minimum temperature also will increase by 4.75 ◦C in the 2080s, 
with a more significant trend. Both RCP 4.5 and RCP 8.5 scenarios show 

Fig. 4. Co-occurrence plot of flood and drought research in Blue Nile Basin from 1990 to 2023 (the nodes indicate how often the keyword appears in documents, 
while the colours of the nodes signify the cluster to which the keyword is assigned).

Table 2 
Distribution of articles based on most publishers.

Publisher Number of articles Percentage (%)

Elsevier 35 37.2
Springer 26 27.7
MDPI 18 19.2
Talor and Fransis 9 9.6
Copernicus 6 6.4
Total 94 100
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a rise in maximum and minimum temperatures (Wubneh et al., 2022).
Conversely, precipitation trends in the basin are not consistent pat

terns (Getachew and Manjunatha, 2022; Tariku et al., 2021). Some 
models indicate a slight increase in the total annual precipitation (Ayehu 
et al., 2021), but others suggest a decreasing trend in the BNB 
(Alemayehu et al., 2022; Takele et al., 2022). For instance, the two 
months with the highest percentage of rainfall in the basin are July and 
August (23.32% and 22.65%, respectively) (Samy et al., 2019). Studies 
such as Tilahun et al. (2023) showed that the ensemble mean of the six 
RCMs forecasts a decrease in precipitation and a rise in temperature for 
both the RCP4.5 and RCP8.5 typical concentration scenarios. Overall, 
the basin faces a future with likely warmer temperatures and a more 
erratic precipitation pattern. Table 4 provides a detailed overview of 
projected rainfall and temperature conditions in the BNB. The table 
presents a warming trend in the BNB and increasing climate variability, 
with a potential implication for water resources. Increasing climate 
variability causes a shift towards more extreme precipitation events 
(Tabari, 2020). Some areas experience intense downpours leading to 

floods, while others see longer periods with little to no rain, intensifying 
droughts. Overall, the projected increases in temperature are signifi
cantly larger than the historical trends, indicating a more rapid warming 
trend in the future. However, the historical variability in precipitation 
patterns is likely to continue, with the potential for more extreme events 
like floods and droughts.

6. Flood and drought extreme events in the Blue Nile Basin

6.1. Occurrence of flood extreme events

Flooding has become an increasingly significant challenge in the 
BNB, driven primarily by climate change and its associated alterations in 
precipitation patterns. Numerous studies have investigated the occur
rence, extent, and potential future of floods in the basin (Chakilu et al., 
2023; Desalegn et al., 2016; Zaroug et al., 2014). Researchers have 
employed hydrological and climate models to simulate and predict flood 
inundation, and depth (Alaminie et al., 2021; Worku et al., 2021), 

Table 3 
An overview of studies on historical precipitation and temperature variations in the BNB.

Study location Study 
period

Main finding Reference

BNB 1950–2018 Extreme temperature variability revealed a marked rise in yearly minimum and maximum temperatures. Mohamed and El-Mahdy 
(2021)

UBNB 1970–2000 By the 2080s, temperature extremes are predicted to rise by a maximum of 5.17 ◦C and a minimum of 4.75 ◦C. Chakilu et al. (2023)
BNB 1981–2010 Historical temperature extremes have demonstrated a monotonically increasing tendency, with observable 

evidence pointing to rising temperatures.
Tedla et al. (2022)

UBNB 1953–2014 The historical temperature extremes have shown a monotonically increasing tendency, and there is apparent 
evidence of rising temperatures.

Samy et al. (2019)

BNB 1964–2003 There is no apparent seasonal or yearly rainfall trend. Tesemma et al. (2010)
Jemma sub-basin 1980–2021 Significant seasonal variations and a downward trend in rainfall Gonfa et al. (2021)
Jemma sub-basin 1980–2014 Increasing trend in mean annual temperature and no significant trends in precipitation and streamflow Lebeza et al. (2023)
Gumara 

catchment
1976–2005 Precipitation increases up to 13.7%, temperature by 1.01 ◦C. Andargachew and Fantahun 

(2017)
UBNB 1982–2017 Actual summer precipitation in 2018 was slightly below the long-term mean but within the range of “near 

normal."
Blum et al. (2019)

Muger 
subwatershed

1980–2019 Low variability in annual and summer areal rainfall. Seasonal rainfall distribution showed strong irregularity 
throughout the years.

Moshe and Beza (2024)

Didessa sub-basin 1986–2014 Variability in rainfall and temperature rise were verified by observed climatic data. Chala et al. (2020)
BNB 1992–2001 Future mean flows will be higher and the potential for future floods to be more severe Nawaz (2010)
BNB 1951–1997 Different patterns of precipitation variability are revealed by sub-seasonal study. Berhane et al. (2014)
UBNB 1965–2012 El Nino followed by La Nina leads to extreme floods. El Nino starting in April–June results in upper catchment 

droughts.
Zaroug et al. (2014)

UBNB 1901–2013 Annual rainfall data in the Upper Blue Nile River Basin is homogeneous at 95%. Elzeiny et al. (2019)

Table 4 
A summary of research findings on projected precipitation and temperature changes in the BNB.

Study location Study period Main finding Reference

UBNB 2020s, 2050s, and 
2080

The lowest temperature is expected to rise by 4.75 ◦C and become more visible in the 2080s. Chakilu et al. (2023)

BNB 2050s and 2080s Temperature and precipitation levels are expected to rise annually. Tariku and Gan (2018)
UBNB 2050s and 2090s Projections of temperature increases, and rainfall decreases in the basin Taye and Willems (2013)
UBNB 2030s,2050s, and 

2080s
Future climate scenarios show increasing trends in precipitation and temperature Mekonnen and Disse 

(2018)
UBNB 2030s and 2070s While BCC-CSM-2MR indicates a modest increase in rainfall, MRI-ESM2-0 predicts a temperature rise. Alaminie et al. (2021)
BNB 2080s and 2100s No consensus on precipitation changes and temperature increases predicted. Elshamy et al. (2009)
UBNB 2020s,20250s and 

2080s
Maximum and lowest temperature trends are rising, whereas stream flow and precipitation trends are falling. Daba and Rao (2016)

Abay Basin 2020s,2040s and 
2070s

Increasing trend in temperature, but no clear trend in rainfall. Awetu and Kenea (2023)

Lake Tana 
basin

2020s An increase in extreme precipitation and temperature events is expected since the 2020s. Moges and Moges (2019)

UBNB 2050s, and 2080s The minimum temperature is expected to rise to 5.92 ◦C, while the maximum temperature is expected to rise 
from 1.38 ◦C to 3.59 ◦C. However, there was no clear trend in the precipitation prediction over the basin.

Getachew and 
Manjunatha (2021)

UBNB 2030s and 2050s Temperature trends upward and is statistically significant, whereas rainfall has a declining trend and is not 
statistically significant.

Takele et al. (2022)

Kessie 
Watershed

2050s and 2080s Mean annual precipitation and temperatures indicate a little increase for the future for all outputs from the 
climate model.

Amognehegn et al. 
(2023)

BNB 2040s and 2080s Changes in precipitation occur in different stations, locations, and times. Gamal et al. (2024)
UBNB the 2030s and 2070 Maximum and minimum temperature increases in all months and seasons Gebre and Ludwig (2015)
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revealing the potential for more frequent and severe flood events in the 
future (Ragab and Negm, 2016; Robi et al., 2019). These studies have 
also demonstrated how climate variability affects the frequency of 
floods in the basin (Lazin et al., 2023). The relationship between El Nino 
and La Nina events was studied by Zaroug et al. (2014), who suggested 
that the timing and temporal patterns of such events could affect the 
likelihood of extreme floods and droughts. According to an examination 
of discharge measurements at the Blue Nile and the El Niño index from 
1965 to 2012, there is a 67% chance that a severe flood will occur.

Many researchers have studied the impact of floods on the Blue Nile 
Basin. For instance, Desalegn et al. (2016) found that river floods in the 
Fogera floodplain, caused by heavy rainfall and overflow of rivers and 
backwater effects from Lake Tana, have significantly damaged human 
life and property in the UBNB. Similarly, Worku (2015) indicated the 
vulnerability of developing countries like Ethiopia to climate change, 
including the increasing frequency of extreme rainfall and the projected 
impacts of floods on crops, water resources, and socio-economic chal
lenges. Moreover, the flooding in the upper parts of the BNB has led to 
increased soil erosion, resulting in the loss of nutrients and the expan
sion of water hyacinth at Lake Tana (Dile et al., 2018).

The region is experiencing more flooding and drought due to adverse 
climate changes that are upsetting hydrological cycles (Endalew, 2024). 
Projections indicate that there could be an increase in total precipita
tion, particularly during the rainy season, which would increase the 
frequency and intensity of extreme rainfall events (Tedla et al., 2022a). 
Additionally, the regional climate models indicate that changes in pre
cipitation patterns will affect runoff, thereby complicating flood man
agement strategies (Abdelmoneim et al., 2023; Zahran et al., 2024). 
Fig. 5 presents a comparison of flood inundation depth across different 
climate models in the basin. It shows high flood inundation maps for 
historical and projected simulations that were taken from the WEB-RRI 

model, showing a rise in all GCMs. It also indicated the projected ele
vations of the inundation zones for CMCC -CMS, ACCESS1.0, CESM1, 
(CAM5), MPI-ESM-LR, and MPI-ESM-MR to be 2208, 14782, 2618, 753, 
and 1838 km2.

Altered precipitation patterns in the basin significantly impact flood 
dynamics. Research findings indicate that climate is likely to intensify 
flooding due to increased variability in precipitation, which is leading to 
more frequent and intense flood events. For instance, a study by Liu et al. 
(2021) predicts specific flood occurrences in 2020, 2025, and 2030, 
highlighting the basin’s vulnerability to hydrological changes driven by 
precipitation fluctuations. Similarly, Phy et al. (2022) suggest that 
changes in precipitation could lead to varying flood magnitudes, with 
significant alterations expected by the 2060s. Overall, the increased 
precipitation and the management of water resources will be crucial in 
shaping flood dynamics in the Blue Nile Basin.

6.2. Occurrence of drought extreme events

The BNRB has experienced frequent drought conditions 
(Abdelmoneim et al., 2023; Ali et al., 2022). Previous studies indicate 
that precipitation patterns will become increasingly variable, with po
tential decreases in dry season rainfall and increases during the rainy 
season, which leads to risks of both floods and droughts (Tedla et al., 
2022a). The regional climate models suggest that future scenarios could 
see annual precipitation changes ranging from − 18.3% to +13.6%, with 
severe drought conditions (Lazin et al., 2023). The influence of climate 
phenomena, such as the El Niño-Southern Oscillation, further compli
cates drought propagation (Nigatu et al., 2024). There have been severe 
and extreme droughts observed in the years 1984, 2002, 2009, and 2015 
(Dilnesa, 2020). In the highlands, the drought reached its peak in July 
2015, whereas in the lowlands, it peaked in June 2015 (Kebede et al., 

Fig. 5. Map of high flood inundation from GCM simulations: (a) historical, (b) projected (Tedla et al., 2022a).
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2019). Additionally, severe drought conditions were identified in 
1984/1985, 1989/1990, 1990/1991, and 1991/1992 (Bayissa et al., 
2019; Dilnesa, 2020). The study also found that severe to extreme 
meteorological droughts were not typical throughout the whole basin, 
except for the north and northeast regions.

Droughts have had significant consequences on both the human and 
economic sectors. Crop destruction, property loss, community disrup
tion, and other socioeconomic problems are only a few of the negative 
consequences that drought has on the socioeconomic sector (Kebede 
et al., 2019). Floods and droughts in the basin cause large financial 
losses and crop yield declines that affect farmer livelihoods and agri
cultural production. Studies indicate that adverse climatic events, 
particularly droughts, lead to substantial crop losses, with an average 
reduction in total crop production by 29% across affected areas (Zenda, 
2024). The specific studies in the Blue Nile basin reveal that farmers can 
incur annual losses of approximately USD 220 per hectare due to 
nutrient loss from soil erosion, exacerbated by these climatic extremes 
(Erkossa et al., 2015).

Both droughts and floods collectively result in economic losses 
exceeding $5.1 billion, affecting 145 to 170 million people in Africa 
(Wollburg et al., 2024). In the Blue Nile basin, soil erosion leads to 
significant financial losses, with farmers losing around USD 370 per 
hectare annually due to nutrient depletion (Elnashar et al., 2021). 
Droughts are identified as the primary risk to crop yields, with a 1% 
increase in drought risk correlating to a yield decline of 14.5 kg/ha for 
sorghum (Elagib et al., 2023). Floods, while less damaging, can still 
cause yield losses; however, they may also enhance yields under certain 
conditions (Kim et al., 2023). Droughts are identified as the primary risk 
to crop yields, with a 1% increase in drought risk correlating to a yield 
decline of 14.5 kg/ha for sorghum (Leng and Hall, 2019). Floods, while 
less damaging, can still cause yield losses; however, they may also 
enhance yields under certain conditions (Kim et al., 2023).

It also threatens agricultural livelihoods and water resources, which 
are crucial for the economy (Ali et al., 2022). The UBNB experiences 
recurring drought events, with severe drought conditions observed in 
certain areas (Bayissa et al., 2021). There are certain years when the 
drought is more severe and lasts longer than previous periods of mete
orological drought (Hailesilassie et al., 2023). This drought escalated 
into a famine due to prolonged dry periods in the preceding years, which 
had been the driest on record (Hassen, 2008). The BNRB is characterized 
as a drought-prone area, and efforts are needed to enhance farming 

practices and implement improved early warning systems.
Fig. 6 presents historical and projected drought conditions using the 

Standardized Drought Index (SDI) based on the CSIRO projections. SDI 
measures drought severity ranging from extremely wet to extremely dry 
conditions. The historical period shows a wide range of drought condi
tions, with some years experiencing severe drought and both RCP4.5 
and RCP8.5 scenarios suggest an increase in drought severity and fre
quency in the future, with the most severe droughts projected towards 
the end of the century under the RCP8.5 scenario. Overall, drought in 
the BNB has wide-ranging impacts on both human well-being and the 
economy, emphasizing the need for effective drought monitoring and 
management strategies.

Ineffective management of water and land in upstream areas nega
tively impacts runoff yields and degrades the quality of water that rea
ches downstream regions (Alemu and Kidane, 2014). The lack of a 
well-structured river basin management system, combined with insuf
ficient water storage capacity and significant spatial and temporal 
variability in rainfall, restricts farmers to cultivating only one crop per 
year. This limitation often leads to crop failures due to dry spells and 
droughts. Furthermore, severe soil erosion further diminishes farmland 
productivity.

Extreme hydrological events, such as floods and droughts, frequently 
occur at both local and basin-wide levels. For example, the devastating 
drought of the early 1980s had a severe impact on much of the Ethiopian 
highlands, while the intense flooding that occurred in August and 
September of 1988 caused widespread destruction in Sudan (Sutcliffe 
et al., 1989). These extreme events disrupt agricultural productivity, 
threaten livelihoods, and strain water resources, necessitating effective 
management strategies. Floods, with increasing frequency and intensity, 
lead to soil erosion and loss of arable land (Getaneh et al., 2024), while 
droughts reduce crop yields, directly affecting food security and income 
for farmers (Tedla et al., 2022a).

Soil erosion remains a significant challenge in the Ethiopian high
lands, contributing to increased sedimentation in reservoirs and lakes 
(Alemu and Kidane, 2014; Awulachew et al., 2007). The sustainability of 
dams in this region is uncertain due to severe soil erosion and sediment 
deposition, both of which are results of poor upland management and 
extensive land degradation (Alemu and Kidane, 2014; Descheemaeker 
et al., 2006; Haregeweyn et al., 2006).

The harmful effects of severe soil erosion extend to both upstream 
and downstream communities (Alemu and Kidane, 2014), particularly 
in Ethiopia’s highlands. To address these challenges, it is essential to 
implement practical and cost-effective in-situ soil and water conserva
tion strategies.

7. Synthesis and knowledge gap

Increased temperatures and altered precipitation patterns are lead
ing to more flooding events, particularly during the rainy season 
(Endalew, 2024). On the other hand, drought conditions are becoming 
more severe due to prolonged dry spells and reduced rainfall, affecting 
agricultural productivity and water availability (Abdelmoneim et al., 
2023; Zahran et al., 2024). Climate change is causing more fluctuations 
in river flow, with higher peak flows during floods and lower flows 
during droughts (Lamichhane et al., 2024). Increased temperatures 
enhance evaporation, leading to more severe droughts and potentially 
more intense rainfall events (Kiros et al., 2022). Changes in rainfall 
distribution, including shifts in timing and amount, contribute to both 
flood and drought occurrences (Gebrehiwot and Van Der Veen, 2013). 
Studies indicate that a rising trend in heavy precipitation leads to more 
floods (Tedla et al., 2022a). Overall, the BNB is experiencing a multi
faceted interaction of climate change factors that are increasing the 
likelihood and severity of both floods and droughts.

Flood and drought extremes in the BNB reveal a knowledge gap that 
needs further investigation. Firstly, there is a lack of comprehensive data 
on the socio-economic impacts of these extremes, particularly how they 

Fig. 6. Future drought compared to the baseline period based on CSIRO model 
estimates (Lazin et al., 2023).
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affect local communities and agricultural practices (Gebeyhu, 2024). 
Additionally, existing studies often focus on hydrological modelling 
without adequately addressing the interaction between water resources, 
climate variability and land use changes, which can exacerbate flood 
and drought conditions (Endalew, 2024; Nigatu et al., 2024). These 
models should be capable of simulating extreme events with higher 
accuracy. Moreover, the role of climate change in altering precipitation 
patterns and its subsequent effects on water resource management re
mains underexplored (Shiferaw et al., 2024).

There is also a need for more localized studies that consider the 
unique geographical and climatic conditions of the Blue Nile Basin, as 
current research tends to generalize findings from broader regions 
(Abdelmoneim et al., 2023). Developing effective early warning systems 
for both floods and droughts is crucial for disaster risk reduction. 
Addressing these gaps will enhance our understanding of flood and 
drought dynamics and inform more effective management strategies.

8. Implications and the need for action

Increased flood and drought extremes in the BNB pose significant 
threats to the environment, society, and water resources. Intense rainfall 
associated with floods can lead to severe soil erosion, reducing soil 
fertility, loss of agricultural productivity, destruction of infrastructure, 
and adversely affecting local communities and their livelihoods (Tedla 
et al., 2022a). Floods can transport pollutants into water bodies, 
contaminating water sources and harming aquatic life. It is a significant 
disturbance that affects aquatic ecosystems and the services they pro
vide to the ecosystem (Talbot et al., 2018). Conversely, droughts can 
aggravate water scarcity, impacting agricultural productivity and food 
security, which is critical for the basin’s population (Ali et al., 2022). 
Prolonged droughts can accelerate desertification, leading to land 
degradation and loss of vegetation cover.

These hydrological extremes are likely to increase due to climate 
change, leading to unpredictable water availability and increased 
competition for resources (Elagib et al., 2021). This variability can strain 
existing water management systems, necessitating adaptive strategies to 
mitigate adverse effects on both human and ecological systems 
(Mastrandrea and Bohn, 2023). Furthermore, the socio-economic im
plications include heightened vulnerability among marginalized com
munities, who may lack the resources to cope with such environmental 
stresses (“Investigating extreme hydrological risk impact on water 
quality; evidence from Buffalo catchment headwater, Eastern Cape, 
South Africa,” 2023). Thus, a comprehensive approach is essential to 
address these challenges and promote resilience in the BNB.

The BNB faces a significant challenge for extreme flood and drought 
events in Fig. 7. These need robust adaptation and mitigation strategies. 
Studies indicate that climate variability is increasing these hydrological 
extremes, which impacts water resources and agricultural productivity 
in the area (Mohammed, 2024). Effective adaptation strategies, such as 
improved water management practices, the development of resilient 

infrastructure, and the implementation of early warning systems, are 
essential to enhance resilience against these climatic threats 
(Abdelmoneim et al., 2023; Lazin et al., 2023). Moreover, mitigation 
efforts, including reforestation and adopting sustainable land use prac
tices, can help reduce the severity of floods and droughts by improving 
soil moisture retention and regulating water flow (Bi et al., 2024). 
However, the integration of local knowledge and community involve
ment in these strategies is crucial for their success, as highlighted by 
studies emphasizing participatory approaches (Endalew, 2024). Thus, a 
comprehensive framework that combines both adaptation and mitiga
tion is vital for addressing the multifaceted challenges posed by climate 
extremes in the Blue Nile Basin.

Large-scale water storage infrastructure, such as the Grand Ethiopian 
Renaissance Dam (GERD), is essential for regulating river flow and 
reducing the risks of flooding and drought (Mengistu et al., 2021). The 
construction of check dams, percolation ponds, and rainwater harvest
ing systems improves water retention and ensures availability during 
dry periods (Alemayehu et al., 2020). Additionally, implementing 
reforestation, terracing, and soil conservation techniques helps mini
mize runoff and soil erosion, which in turn reduces flash floods and 
enhances water infiltration (Gebregziabher et al., 2012).

Satellite-based monitoring and community-driven early warning 
systems also bolster preparedness for extreme weather events (Taye 
et al., 2015). Moreover, practices such as agroforestry, conservation 
agriculture, and crop diversification help mitigate vulnerability to un
predictable rainfall patterns (Deressa et al., 2009). Strengthening water 
governance, fostering transboundary cooperation, and engaging local 
communities all contribute to more effective water resource manage
ment (Biratu et al., 2023).

Promoting alternative income sources, such as livestock farming, 
handicrafts, and small-scale trade, helps reduce reliance on rain-fed 
agriculture (Biratu et al., 2023), Indigenous water management prac
tices, including traditional irrigation systems, enhance local resilience 
(Adimassu et al., 2014). Lastly, training farmers in climate-smart agri
culture and sustainable water management supports long-term adapta
tion to changing environmental conditions (Belay et al., 2017).

A sustainable approach to addressing flood and drought risks in the 
Blue Nile Basin necessitates a holistic perspective that considers eco
nomic, social, and environmental dimensions, guided by Integrated 
Water Resources Management (IWM) principles. IWM emphasizes 
equitable access to water resources, efficient utilization, and the pro
tection of water ecosystems. Key institutions, such as the Nile Basin 
Initiative (NBI), the Eastern Nile Technical Regional Office (ENTRO), 
the International Water Management Institute (IWMI), and national 
agencies in respective countries, play crucial roles in promoting IWM 
principles through collaborative efforts, capacity building, and knowl
edge sharing. The Cooperative Framework Agreement (CFA) on the Nile 
Basin, though not yet fully ratified, provides a framework for equitable 
and sustainable water resource utilization among riparian states. 
Furthermore, the active involvement of local communities, through the 

Fig. 7. (a) Farming fields in the Robit district affected by seasonal drought (Manyazewal, 2022) and (b) flooding that devastated rice production in the Fogera plain 
of the Upper Blue Nile Basin (Dawit and Abebaw, 2020).
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implementation of community-based adaptation measures, is essential 
for building resilience and ensuring the long-term sustainability of water 
resources in the basin. These collective efforts, guided by IWM principles 
and underpinned by regional cooperation, are crucial for mitigating the 
impacts of climate change and ensuring the sustainable development of 
the Blue Nile Basin.

The Eastern Nile Subsidiary Action Program (ENSAP), established in 
2002, includes Egypt, Ethiopia, and Sudan (Haileslassie et al., 2009; 
Misgan, 2013). Its long-term objectives are to (a) promote efficient 
water management and prevent significant harm, (b) foster cooperation 
among Eastern Nile countries, (c) support poverty eradication and 
economic integration, and (d) move from planning to implementation. 
ENSAP oversees various projects, including flood preparedness, the 
Baro-Akobo water resource initiative, the Ethiopia-Sudan transmission 
interconnection, and irrigation and watershed management efforts 
(Bahri et al., 2011; Misgan, 2013).

The Nile Basin Initiative (NBI) promotes regional cooperation 
through the Cooperative Framework Agreement (CFA), aiming to 
establish a legal framework for the sustainable management of the Nile 
River basin (GWP, 2009). The CFA focuses on public education about 
water rights, national planning processes, and integrating climate 
change into water sector development plans (Eyasu, 2005; Misgan, 
2013).

Effective river basin management is essential for reducing poverty 
and conflicts while preventing environmental degradation. Integrated 
River Basin Management (IRBM) supports decision-making, especially 
in the upper Nile basin, home to over 180 million people. Strong in
stitutions and stakeholder participation enhance cooperation and 
peaceful relations among countries. Transboundary water cooperation is 
vital for reducing poverty and preserving resources (Teshome B, 2008). 
Negotiations should emphasize benefit-sharing over water-sharing to 
avoid disputes.

9. Conclusion

Climate change is causing floods and droughts to be more frequent 
and severe in the BNB. Observational evidence and climate model pre
dictions show that higher peak rainfall levels result in an increased 
frequency and intensity of flash floods and riverine floods. Floods in the 
basin significantly impacted the livelihood of the community. It is a 
major challenge in the Eastern Tana sub-basin, which is placed in the 
upper BNB, causing displacement and damage to human life and prop
erty. Alongside the increased floods, the basin is also facing more severe 
and prolonged droughts. The drought severity and duration are higher in 
some years, such as 1984, 2002, 2009, and 2015. The El Niño and La 
Niña climate phenomena have a substantial impact on rainfall patterns 
in the region, which in turn contributes to drought and flood events. The 
intricate and dynamic effects of climate change on the basin require 
constant monitoring and the application of adaptation measures.

Climate change is intensifying the frequency and severity of both 
floods and drought extreme events, which is a significant challenge to 
the basin’s agriculture, water resources, infrastructure, and overall so
cioeconomic development. It is anticipated that future precipitation 
patterns and drought extremes will grow more unpredictable, directly 
affecting the amount of water available. In areas with little data, 
analyzing flood frequency has proven difficult; yet, the generalized 
extreme value distribution has shown reliable for predicting floods. 
Community awareness of water scarcity, extreme events, and respon
sible water usage practices is important for water resource management. 
Policymakers, researchers, and communities can develop effective plans 
to reduce risks and ensure the sustainable management of the basin’s 
vital resources by developing a deeper understanding of these hydro
logical extremes.

Understanding flood and drought extremes in the BNB is crucial for 
effective water resource management and adaptation planning. Improve 
early warning systems for floods and droughts, allowing for timely 

interventions. Develop infrastructure and policies to withstand extreme 
events, reducing damage and losses. Finally, assessing the changes in 
precipitation and temperature extremes and their impact on hydrolog
ical extremes using hydrological models can provide valuable informa
tion for future sustainable water resource management.
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