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This paper presents a novel approach to modeling and controlling a solar photovoltaic conversion 
system(SPCS) that operates under real-time weather conditions. The primary contribution is the 
introduction of an uncertain model, which has not been published before, simulating the SPCS’s 
actual functioning. The proposed robust control strategy involves two stages: first, modifying the 
standard Perturb and Observe (P&O) algorithm to generate an optimal reference voltage using 
real-time measurements of temperature, solar irradiance, and wind speed. This modification leads 
to determining and linearizing the nonlinear current-voltage (I-V) characteristics of the photovoltaic 
(PV) array near standard test conditions (STC), resulting in an uncertain equivalent resistance used to 
synthesize an overall model. In the second stage, a robust fixed-order H∞ controller is designed based 
on this uncertain model, with frequency-domain specifications framed as a weighted-mixed sensitivity 
problem. The optimal solution provides the controller parameters, ensuring good reference tracking 
dynamics, noise suppression, and attenuation of model uncertainties. Performance assessments at 
STC compare the standard and robust P&O-MPPT strategies, demonstrating the proposed method’s 
superiority in performance and robustness, especially under sudden meteorological changes and 
varying loads. Experiment results confirm the new control strategy’s effectiveness over the standard 
approach.

In most industrial applications, the real-time implementation of existing controllers is confronted with 
numerous failures, leading to lost time, reduced productivity, and high cost of repairs. These malfunctions are 
generally due to non-precise computation concerning the parameters of the synthesized controller. For instance, 
when designing a PID controller, it is essential to fine-tune its three gains—the proportional gain, the integral 
gain, and the derivative gain - while meeting all the designer’s requirements1. It requires the proper settings, of 
which the availability of a correct mathematical model is one of the main requirements. Unfortunately, a perfect 
model is rarely available for most industrial applications. It is due to several factors, such as the necessity of 
linearizing the dynamics of the controlled system, the necessity of neglecting some unmodeled high-frequency 
modes when providing the simplified linear model, and so on2. Consequently, all these challenges require prior 
acknowledgment of all possible uncertainties that may affect the synthesized model, which in turn requires the 
design of a robust controller that must be synthesized using one of the strategies based on robust control theory.
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It should be noted here that the synthesis of such robust controllers requires prior consideration of all 
model uncertainties, which are due to an inadequate choice of model structure for correctly describing the 
actual behavior of the system, or to an erroneous choice of identification technique that guarantees a precise 
computation of model parameters. Moreover, it is important to carry out a rigorous assessment of all exogenous 
effects having a direct or indirect impact on the control chain, such as the effects of sensor noise in the event 
of transducer malfunction, the effect of environmental disturbances, etc3. In fact, by fully identifying all these 
unavoidable effects, it is possible to define a robustness condition, called robust stability RS. This condition 
must be satisfied throughout the frequency range, especially if the synthesized model is subject to unknown 
uncertainties4. This allows to secure the closed-loop system with an increasingly high safety margin. At the 
same time, satisfying the RS condition is not enough when designing the desired robust controller, as there is 
another condition whose role is totally complementary to the previous one, requiring it to be satisfied in the 
same frequency range. It is known as nominal performance NP4. It often includes all the necessary proprieties to 
reach the desired reference tracking dynamics. Such properties include the overshoot of the time response of the 
closed-loop system, the steady-state error, the two rise and settling times given in the transient state, and so on.4.

Besides, meeting the two preceding conflicting objectives together becomes quite impossible in the same 
frequency range, where finding a trade-off between them presents a real challenge for most designers of robust 
controllers. Note that meeting the RS condition becomes more crucial, especially in high frequencies while 
meeting the NP condition becomes crucial, especially in low frequencies. So, in terms of sensitivity functions, 
the ideal shape corresponding to the plot of the maximal singular values of the direct sensitivity reflecting 
the desired NP needs to be minimized, as far as possible, at low frequencies and to approach the unity value 
at high frequencies5. Conversely, the ideal shape corresponding to the plot of the maximal singular values 
of the complementary sensitivity reflecting the desired RS needs to be minimized, as far as possible, at high 
frequencies and to approach the unity value at low frequencies. This results in each frequency point obtaining 
the value of unity when summing the maximal singular values of the two plots corresponding to the direct and 
complementary sensitivity functions5,6. Later, we see that the margin of the trade-off, ensured by different robust 
controllers, can be compared by measuring the distance provided by the unit value and the sum of two previous 
sensitivity functions that correspond to each controller.

In the engineering of SPCS, it is obvious that the design of a robust controller is often better achieved when 
the actual behavior of the SPCS is based on an uncertain model. This is due to several reasons, such as the 
existence of non-linearity in the I-V characteristic of the overall PV model, whose parameters often vary over 
time as a function of unpredictable changes in weather conditions7. Consequently, such a PV model having fixed 
parameters may not accurately reflect the actual behavior of the SPCS when facing a sudden change in weather 
conditions. However, uncertain models appear to be closer to reality. This reasoning becomes true not only 
in the case of SPCS functioning in the STC but also where real-time measurements of weather conditions are 
considered. In addition, it is possible to linearize the actual behavior of the SPCS by applying the small-signal 
principle. It is based on the elimination of all steady-state variations of the electrical variables, as well as those 
whose variation exceeds strictly the order of one8. In any case, uncertain models seem to be more able to cover 
all possible modeling errors, thus providing a fairly correct synthesis of the robust controller using one of the 
MPPT strategies.

The control strategy to be implemented in this paper consists of two cascaded control loops9. The first loop 
consists of using the modified P&O algorithm instead of the standard one. The main aim is to generate an 
optimal reference voltage output as a function of variations in real-time measurements of total PV power input 
and total PV voltage input where the last one is measured at the terminals of the overall PV array based on 
a series connection of four PV panels of poly-crystalline technology. As a starting stage, the modified P&O 
algorithm must be initialized with an initial reference voltage that corresponds to an initial position of the MPP. 
When one or more climatic conditions vary uniformly or randomly, a new unknown MPP position is produced. 
In this case, the previous voltage is updated by a fixed step until reaching its optimal value that corresponds to a 
new MPP position. Here, the resulting optimal reference voltage is considered as a set-point input, to be followed 
in the second control loop using the robust voltage controller10,11.

The second loop consists of updating an initial duty cycle control by minimizing a voltage error, that occurred 
at each sampling time. This last one is generated when the optimal reference voltage input is compared by the 
measured total PV voltage of the preceding overall PV array9. It is therefore a case of cascade control of the 
total PV power, in which its threshold must always be reached. For the SPCS, the input variables correspond to 
the three preceding climatic conditions, and the output variable corresponds to the total power. This last one 
must be generated with a ripple-free to avoid affecting the sustainability of each component in the SPCS. The 
control variable to be optimally generated consists of defining a favorable duty cycle, to guarantee the most 
precise possible setting of the switching frequency in the DC-DC boost converter9,10. Based on previous research 
focusing on the two-stage P&O -MPPT strategy, the latter is not a new design for SPCS control. Rather, the 
novelty resides in the type of overall model used in its second loop to design a desired robust controller. It also 
lies in meeting the designer’s pre-imposed requirements.

Knowing that the desired overall model of the SPCS includes another auxiliary model simulating the 
functioning of the PV array at STC. This model is designed through an equivalent electrical circuit including 
some unknown components, such as the diode ideality factor, series resistance, and shunt resistance where the 
value of each one can be optimized using an appropriate optimization tool11. Next, the I-V characteristic resulting 
from this model is linearized at STC. It enables the determination of the two new electrical components, called 
also: nominal equivalent resistance and nominal equivalent voltage source. Thanks to the preceding linearization 
step, the linear relationship between the nominal total current and nominal total voltage is established, later 
used in the next step10. Next, the nonlinear state-space representation describing the functioning of the SPCS 
is established. Its linearization step is carried out by applying the small-signal principle, in which the previous 
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linear relationship is used. This leads to building the overall linear small-signal model, by which the parameters 
of the desired controller can be set using some guidelines available in the literature. Following these procedures 
leads to improving the performance of the preceding strategy. Accordingly, some researchers have recently 
synthesized some efficient controllers by employing this kind of overall linear small-signal model.

Among them, Aissani et al., (2023) used the Simulink-MATLAB software, including a graphical user interface 
(GUI) to design the overall linear small-signal model. It is used to set the parameters of the PID controller using 
the loop shaping principle, combined with the frequency identification technique12. In the same year, Tadj et al., 
(2023) designed the fractional-order PID controller, i.e., FO-PID, using the Aquila optimizer13. One year later, 
Refaat et al., (2024) optimized the parameters of the controller using horse herd optimization14. In a parallel 
project, Bechouat et al., (2024) developed a linear small-signal model based on experimental input-output data, 
collected as frequency data using a free Piecewise Linear Electrical Circuit Simulation (PLECS) software. The 
resulting overall small-signal model was then employed to tune the parameters of the PID controller using 
Pidtune function of MATLAB software. This controller was implemented to improve the performance of the 
incremental conductance INC-MPPT strategy15. All these two-stage P&O -MPPT strategies have demonstrated 
their relevance and cost-effectiveness in terms of extracting as much as possible electrical energy from solar 
energy conversion systems. Nevertheless, the key to success still depended on guaranteeing a very high level of 
accuracy in the modeling of the small-signal linear model.

Compared to all these recent synthesis methods used in the same context, the main contribution lies in the 
design of an uncertain small-signal model and in quantifying all plant uncertainties to highlight the robustness 
conditions to be met. These conditions are then formulated in the form of a weighted mixed sensitivity problem, 
whose solution enables to design of the appropriate robust controller.

Following the above-mentioned introduction, the remaining sections will be organized as follows. Second 
section is devoted to describing the control loop used to achieve a maximal extraction of energy from the 
SPCS. Also, it explains how to optimize the three key parameters of the equivalent electrical circuit of the PV 
model using GA. It then follows with the linearization of the I-V characteristic of the PV model at the STC, 
which allows determining the nominal value of the equivalent linearization resistances as well as the set of 
uncertain ones. In addition, this section aims to determine the uncertain linear representation of the state space 
representation describing the functioning of the SPCS using the small signal principle. Third section describes 
in detail the design of the robust fixed-order H∞ controller where the synthesis problem is formulated as a 
weighted mixed sensitivity problem, whose optimal solution provides the desired controller for which a trade-
off between performance and robustness must be ensured. The fourth section describes the experimental test 
including the real-time measurements. Some of them are used for the PV design model, other measurements are 
used to validate the PV model and some other measurements are used to evaluate the performance of the SPCS. 
The document ends with a general conclusion (fifth section), in which further avenues of work are suggested.

The control loop used for the maximal power extraction of the SPCS
The SPCS to be controlled is often operated under three climatic conditions that change in real-time, such 
as outdoor temperature, solar irradiation, and wind speed. Accordingly, a perfect extraction of the maximal 
power is usually ensured in STC, in which the nominal temperature is given by Tstc refers to the ambient 
temperature with the nominal value of 25◦C  and the nominal solar irradiance is given by Gstc = 1000W/m2

. The corresponding nominal MPP position must be closely tracked using appropriate control strategies, where 
performances resulting from one can be evaluated in STC. As this position is heavily dependent on the variation 
of one or more of the preceding meteorological conditions, it must be supervised and tracked according to 
specific requirements. In this paper, the robust P&O-MPPT strategy will be detailed and its performances will 
be compared with the ones resulting from the same kind of control strategy. To begin, let’s consider the control 
loop of the SPCS, controlled by the proposed robust P&O-MPPT strategy (see Fig. 1).

It consists of a set of PV panels based on poly-crystalline technology. It is used as a PV generator to feed a 
variable resistive load throughout a DC-DC boost converter. Here, the PV generator has Ns number of series-
connected PV panels per string. It also contains Np number of parallel strings, giving the total current Ig

pv  and 
the total voltage V g

pv , where Ig
pv = Np · I1

pv  and V g
pv = Ns · V 1

pv . Moreover, I1
pv  and V 1

pv  are the current and 
the voltage corresponding one PV panel. In general, the total electrical power P g

pv , generated by the PV array, is 
defined by P g

pv = Ig
pv · V g

pv
12.

As mentioned before, the control loop is ensured by the 2-stages P&O-MPPT strategy. In the first stage, the 
optimal reference voltage V opt

ref , carried out the modified P&O algorithm block, is generated, which defining both 
the new MPP position to be tracked, as well as, the new threshold of the total electrical power P g

pv  to be extracted 
in event of changes in real-time measurements of the three preceding climatic conditions. Further details of 
the modified P&O algorithm can be found in Appendix A15–17. In the second stage, the reference voltage V opt

ref  
is compared by the measured total voltage V g

pv , providing the total voltage error δev  at each sampling time k. 
This last one must be attenuated, as much as possible, by the robust fixed-order H∞ controller to provide the 
optimal variation δD(t) of the duty cycle control D(t), which usually initialized by the corresponding STC value 
It is assumed that the SPCS to be used for the generation of the global PV power will be operated in the STC. 
It is composed of three electrical devices that are connected in series according to the following order: Solar 
generator, DC-DC boost converter, and variable resistive load R. (see Fig. 1).

According Fig. 1, it is clear to see that the optimal variation δD(t) allows updating the initial value of the 
duty cycle control to reach the optimal total duty cycle Dopt(t), where Dopt(t) = Dg

stc − δD(t)10. This last one 
must be converted, for real-time implementation, to a control signal using the pulse width modulation PWM 
generator. It is essential to underline the fact that the synthesis of the robust controller requires the prior design 
of a linear model, which can take into account all exogenous effects that can impact the synthesized model 
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in STC. In the present paper, the overall model of the SPCS is assumed to be uncertain due to the presence 
of another uncertain auxiliary model, describing the functioning of the PV array in STC. The corresponding 
equivalent electrical circuit has three key parameters, which must also be considered uncertain where its optimal 
tuning is ensured by the GA-based method.

Modeling of the PV panel
The desired model describing the functioning of a single PV panel based on poly-crystalline technology can be 
designed using the equivalent electrical circuit, as depicted in Fig. 2. This circuit is used to calculate the output 
current and voltage of both a single solar cell and the PV panel as a whole. It includes three key parameters to be 
optimized: the diode ideality factor n, the series resistance R1

s , and the shunt resistance R1
p

10,18.
According to Fig. 2, the predicted current I1

m is given as a function of the model voltage V 1
m using Eq. (1). It 

is given as below12

	
I1

m = I1
ph − I1

0d ·
(

−1 + exp

(
V 1

m + R1
s · I1

m

n · V 1
T

))
−

(
V 1

m + Rs · I1
m

R1
s

)
� (1)

Moreover V 1
T  is the temperature voltage given by Nc number of series-connected PV cells per one PV panel, it 

is given by12

	
V 1

T =
(

k · Tc

q

)
· Nc� (2)

Where q = 1.602176 × 10−19 C  is the electronic charge, k = 1.3806503 × 10−23J/K  is the constant of 
Boltzmann and n is the diode ideality factor. Also, Tc is a cell temperature depending on the three climatic 
conditions, such as the outdoor temperature T, the solar irradiance G and the wind speed ω. These parameters 
are related to the cell-temperature by the empirical relationship, given as below19

Figure 2.  Equivalent electrical circuit of the overall solar PV cell.

 

Figure 1.  Control loop based on the proposed robust P&O-MPPT strategy.
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	 Tc = 1.14 · (T − Tstc) + 0.0175 · (G − 300) − Kr · ω + 30� (3)

Here, Kr  is a positive parameter given in manufacturer’ s data sheet. Moreover, the photo-current I1
ph

corresponding one PV panel is defined by15

	
I1

ph =
(

G

Gstc

)
·
(
I1

sh,0 + α · (Tc − Tstc)
)

� (4)

From Eq. (4), the parameter α is a temperature coefficient corresponding to the STC value of the nominal short-
circuit current I1

sh,0 of one PV panel, Also, the reverse saturation current I1
0d is expressed by15

	
I1

0d = I1
sr ·

(
Tc

Tstc

) 3
n

· exp
((

q · Eg

k · n

)
·
( 1

Tstc
− 1

Tc

))
� (5)

where, the band gap energy of the semiconductor Eg = 1.12 V  is measured across a diode and the corresponding 
diode current I1

sr  is given by15

	

I1
sr =

I1
sh,0 + α · (Tc − Tstc)

−1 + exp
(

V 1
oc+β·(Tc−Tstc)

n·V 1
T

) � (6)

Also, V 1
oc is the open-circuit voltage, where β is the temperature coefficient corresponding to one PV panel based 

on poly-crystalline technology.

Parameter identification of the PV model
Let’s consider x the design vector, regrouping the three preceding key parameters to be optimized, i.e., 
x =

(
n, R1

s, R1
p

)T . The main goal is to find an optimal solution x∗ within 3-dimensional search-

pace, including the upper-bound vector xmax =
(
nmax, R1

smax , R1
pmax

)T  and lower bound vector 

xmin =
(
nmin, R1

smin , R1
pmin

)T , where each one must be previously chosen by the user20. The desired optimal 
solution must be minimized, as much as possible, a fitness function, formulated as a quadratic sum of current 
discrepancies, generated when comparing the measured current I1

pv(k) with the predicted current I1
m(k)21, 

where this last one can be determined through the analytically solution of Eq. (1) using the LambertW function, 
available in MATLAB ® software21. The main idea is to set V 1

pv= V 1
m and then to formulate Eq. (1) in a general 

form, given by

	 Z = W (X)eW (X)� (7)

In this case, Z is the argument of the real function W, whose exponential function eW (X) includes the real vector 
X. This vector thus presents the solution of Eq. (1), which is given in a general form, defined by

	 X = lambertW (Z)� (8)

From mathematical developments carried on Eq. (1) in accordance with the last general, we can obtain21

	
X =

(
R1

s · R1
p

n · V 1
T · (R1

p + R1
s)

)
· I1

0d · exp

(
V 1

m + R1
s · I1

m

n · V 1
T

)
� (9)

	

Z =
(

R1
s · R1

p

n · V 1
T · (R1

p + R1
s)

)
· I1

0d · exp


R1

s · R1
p ·

(
Ig

ph + Ig
0d + V 1

m

R1
s

)

n · V 1
T · (R1

p + R1
s)


� (10)

Then, from Eqs. (9) and (10), the predicted PV current I1
m is given by21

	
I1

m =

(
R1

p ·
(
I1

ph + I1
0d

)
− V 1

m

R1
p + R1

s

)
−

(
n · V 1

T

R1
s

)
· LambertW (Z)� (11)

Finally, the design problem of the PV model is formulated as a constrained optimization problem, whose fitness 
function J(n, R1

s, R1
p) presents the mean square error MSE. It is stated below21
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Min{
nmin ≤ n ≤ nmax

R1
smin ≤ R1

s ≤ R1
smax

R1
pmin ≤ R1

p ≤ R1
pmax

J = 1
m

·
m∑

k=1

{
I1

m

(
k, n, R1

s, R1
p

)
− I1

pv(k)
}2

� (12)

where m is the number of samples collected within the experimental test. Finally, the optimal solution of the 
preceding problem leads to the design of the desired overall PV model, in which the total series resistance Rg

s  

and the total shunt resistance Rg
p  are respectively given by Rg

s =
(

Ns
Np

)
· R1

s  and Rg
p =

(
Ns
Np

)
· R1

p. Also, the 

total diode voltage V g
d , where V g

d = Ns · V 1
d  is accordingly given by V g

d = V g
m + Rg

s · Ig
m.

The linearization of the I-V characteristic resulting from the overall PV model
The linearization of the I-V characteristic, corresponding to the overall PV model for MPP, is a crucial step in 
finding the linear relationship between the total current Ig

m and total voltage V g
m. This requires knowing the 

expression of the tangent line that must be drawn on the previous I-V characteristic at the point (V g
stc, Ig

stc), 
where total electrical power reaches its maximal (see Fig. 3). This leads to obtain10,12

	
Ig

m =
(

∂Ig
m (V g

stc)
∂V g

m

)
· V g

m +
(

Ig
m (V g

stc) −
(

∂Ig
m (V g

stc)
∂V g

m

)
· V g

stc

)
� (13)

The corresponding inverse slope leads to obtain the total equivalent resistorR̃g
eq , which is related with the total 

equivalent voltage source Eg
eq  by the linear relationship, given as below10,12

	
Ig

m = −
(

1
R̃g

eq

)
· V g

m +
(

1
R̃g

eq

)
· Eg

eq � (14)

From Eqs. (13) and 14, the two electrical components R̃g
eq  and Eg

eq  are expressed by10,12

	

R̃g
eq = 1(

1
n·V g

Tstc

· Ig
0d · exp

(
V

g
stc

+R
g
s ·Ig

stc

n·V g
Tstc

))
+ 1

R
g
p

� (15)

	 Eg
eq = R̃g

eq · Ig
stc + V g

stc� (16)

V g
stc and Ig

stc are the STC values of V g
m and Ig

m respectively. Correspondingly, the total reverse saturation 
current Ig

0d is given by Ig
0d = Np · I1

0d. Also, the STC value of the temperature voltage V g
Tstc

is given by 
V g

Tstc
= Ns ·

(
k·Tc·Nc

q

)
. Typically, there is no unique solution to the above-constrained optimization problem. 

Figure 3.  Linearization of the I-V characteristic around the STC.
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This is due to the random behavior of the GA, whose exact solution depends on an appropriate choice of the 
two upper and lower limit vectors mentioned above. When the choice of these two limit vectors is too strict, 
the GA can remain stuck on one or more edges limiting the search space, so that the resulting solution satisfies 
certain constraints but does not explore more promising regions for the minimization of the fitness function. To 
overcome this problem, it is crucial to carefully extend the limit where the constraint is saturated. As a result, the 
previous linearization generates more than one tangent line in STC, leading to further doubts about the value 
of the equivalent resistance. As this value will play a decisive role in determining the overall model describing 
the actual functioning of the SPCS at STC, it must therefore be considered as an uncertain parameter, belonging 
within the range R̃g

eqϵ
[
Rg

eq, R
g
eq

]
, where the upper limit Rg

eq  is given by Rg
eq = R

g

eq
·
(
1 + ∆Rg

eq

)
, while the 

lower bound Rg
eq  is given by Rg

eq = Rg
eq ·

(
1 − ∆Rg

eq

)
. In this concept, Rg

eq  is the best value guaranteeing the 
deepest descent of the fitness function. It is therefore considered as the nominal equivalent resistance, where all 
other possible values of R̃g

eq  are considered as uncertain resistances. Each one of them deviates from the nominal 

value by a relative distance, given by 0 ≤
∣∣∣
(

R̃g
eq − Rg

eq

)
/Rg

eq

∣∣∣ ≤ 1. Accordingly, it is possible to determine 

several neighboring models based on all possible values of R̃g
eq , where a perturbed model can describe one of 

the existing functioning of the actual SPCS behavior.

Modeling of the overall SPCS
The overall nonlinear model describing the functioning of the SPCS is determined using the electrical circuit 
shown in Fig. 4.

Accordingly, the corresponding nonlinear state-space representation is given by9,10,12

	

d

dt
V g

m(t) = 1
C1

· Ig
m(t) − 1

C1
· Ig

L(t)

d

dt
Ig

L(t) = 1
L

· V g
m(t) −

(
1 − D(t)

L

)
· V g

0 (t)

d

dt
V g

0 (t) =
(

1 − D(t)
C2

)
· Ig

L(t) − 1
R̃ · C2

· V g
0 (t)

� (17)

where, Ig
L is the current traversing the inductance L where C1and C2 are, respectively, the PV-side capacitor and 

load-side capacitor. Moreover, Ig
0  and V g

0  are, respectively, the total current and total voltage, measured cross 
the variable resistive load R. Here, the STC value of the total voltage V g

0  is defined by V g
0stc

=
√

P g
stc · R, where 

Figure 4.  Linearization of actual SPCS behavior at STC.
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P g
maxis the STC value of the total power, given by P g

max = V g
stc · Ig

stc
7. Also, the corresponding STC value of the 

total duty cycle control is given by Dg
stc = 1 − V

g
stc

V
g

0stc

7.

To illustrate the small signal principle, we now consider the particular case of two state variables X(t) and Y(t). Each 
variable contains an STC value plus a small variation where, X(t) = Xstc + δX(t) and Y (t) = Ystc + δY (t)
. Also, let’s consider the state variable Z(t), where Z(t) = X(t) · Y (t), which can also be given by the general 
form Z(t) = Zstc + δZ(t), where Z(t) = (Xstc · δY (t) + Ystc · δX(t)) + Xstc · Ystc + δX(t) · δY (t)
. According to the small signal principle, it is obvious that all stationary quantities must be eliminated, and 
variations of order greater than or equal to 2 must also be removed. This leads to obtain the small state variation 
δZ(t) where δZ(t) = Xstc · δY (t) + Ystc · δX(t). In this case, the non-linearity around the STC of the 
state variable Z(t) now becomes linear, but around the equilibrium point. Applying now the same idea on the 
preceding nonlinear state-space representation using the following variable states22:

	

V g
m(t) = V g

stc + δV g
m(t)

Ig
m(t) = Ig

stc + δIg
m(t)

IL(t) = Ig
Lstc

+ δIg
L(t)

V g
0 (t) = V g

0stc
+ δV g

0 (t)
D(t) = Dg

stc − δD(t)

� (18)

By replacing Eq. (18) in Eq. (17), we get22

	

d

dt
(V g

stc + δV g
m(t)) = 1

C1
· (Ig

stc + δIg
m(t)) − 1

C1
·
(
Ig

Lstc
+ δIg

L(t)
)

d

dt

(
Ig

Lstc
+ δIg

L(t)
)

= 1
L

· (V g
stc + δV g

m(t)) −
(

1 − (Dg
stc − δD(t))

L

)
·
(
V g

0stc
+ δV g

0 (t)
)

d

dt

(
V g

0stc
+ δV g

0 (t)
)

=
(

1 − (Dg
stc − δD(t))
C2

)
·
(
Ig

Lstc
+ δIg

L(t)
)

− 1
R · C2

·
(
V g

0stc
+ δV g

0 (t)
)

� (19)

Similarly, by applying the small signal principle on Eq. (19), we get22

	

d

dt
δV g

m(t) = 1
C1

· δIg
m(t) − 1

C1
· δIg

L(t)

d

dt
δIg

L(t) = 1
L

· δV g
m(t) −

(
1 − Dg

stc

L

)
· δV g

0 (t) −
(

V g
0stc

L

)
· δD(t)

d

dt
δV g

0 (t) =
(

1 − Dg
stc

C2

)
· δIg

L(t) − 1
R · C2

· δV g
0 (t) +

(
Ig

Lstc

C2

)
· δD(t)

� (20)

By applying the same preceding idea on Eq. (14), we get

	
δIg

m(t) = − 1
R̃g

eq

· δV g
m� (21)

Finally, the uncertain linear small signal model, which links the model output δV g
m(t) with the model input 

δD(t), is obtained by replacing Eq. (21) in Eq. (20). Consequently, the general form of its linear state-space 
representation is given by

	
ẋm(t) = Ãm · xm(t) + Bm · δD(t)

δV g
m(t) = Cm · xm(t) � (22)

where xm(t) is the state vector regrouping the three state variables δV g
m, Ig

L and δV g
0 , i.e., 

xm(t) = (δV g
m, δIg

L, δV g
0 )T . Moreover, the input matrix Bm and the output matrix Cm are defined by 

Bm =
(

0, −
V

g
0stc
L

,
I

g
Lstc
C2

)T

and Cm = (1, 0, 0 ) respectively. Also, the uncertain state matrix Ãm is defined 

by Eq.23, given as below

	

Ãm =




− 1
C1·R̃g

eq

− 1
C1

0

1
L

0 −
(

1−D
g
stc

L

)

0 1−D
g
stc

C2
− 1

R·C2


� (23)

Assuming there is no uncertainty regarding the equivalent resistance in the overall PV model, i.e., ∆Rg
eq = 0

, it is possible to determine the nominal transfer function Gn(s) based on the uncertainty-free part matrix 
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Am using the following relationship Gn(s) = Cm · (s · I3×3 − Am)−1 · Bm, where s is the Laplace operator, 
I3×3 is the identity matrix having the same size as matrix Am. Accordingly, the perturbed transfer function 
GP (s) is expressed concerning the nominal one using the relationship Gp(s) = Gn(s) · (1 + ∆m(s)), where 
the unknown transfer function ∆m(s) must be satisfied the robustness condition |∆m(s)| ≤ 1. It includes all 
relative distances, that occurred between the nominal model Gn(s) and all possible perturbed models Gp(s). In 
this paper, these distances are assumed to be unstructured multiplicative uncertainties.

Design of the robust fixed-order H∞ controller
Consider the closed-loop system including the robust controller K(s). This last one is connected in series with 
the perturbed model Gp(s) (see Fig. 5a). Similarly, consider the uncertain parameter R̃g

eq , which appeared in 
the state matrix Ãm  of the previous overall model. The inter-model distances generated between the nominal 
model Gn(s) and any neighboring uncertain model Gp(s) are considered as unknown relative uncertainties. It 
is modeled by the unstructured multiplicative uncertainty ∆m(s), which is expressed by23,24

	 ∆m(s) = G−1
n (s) · (Gp(s) − Gn(s))� (24)

According to the robust control design methodology, the first step is to separate all modeling uncertainties from 
the nominal model Gn(s). This allows for establishing the closed-loop system, illustrated in Fig. 5b. Based on 
the worst-uncertainty case occurring in the perturbed model Gp(s), the curves of maximal singular values of all 
preceding uncertainties σmax [∆m (ωm)] must be majorized, over the frequency rang ωmϵ (ωmmin , ωmmax ), 
by the curve of the ones corresponding σmax [Wy (ωm)]. This leads to satisfy the inequality relationship, given 
by Eq. (25) as below23,24

	 σmax [Wy (ωm)] > σmax [∆m (ωm)]� (25)

In this paper, the transfer function Wy(s) is determined by the MATLAB function ucover. MATLAB It is then 
used to penalize the model output δV g

m for providing the exogenous output zy  (see Fig. 5c). The main aim is to 
minimize, as much as possible, the energy of the weighting function output zy , regardless of any change in the 
exogenous input δV g

ref . This requires satisfying the RS condition, formulated as below23,24

	
RS : ∥Wy(s) · Ty(s)∥∞ ≤ 1 ⇐⇒ ∥Ty(s)∥∞ ≤ 1

∥Wy(s)∥∞
� (26)

where, ∥X(s)∥∞ is an H∞-norm of the transfer function X(s), which defines the largest threshold in the curve 
of σmax [X (ωm)] over the frequency rang ωmϵ (ωmmin , ωmmax ). Also, the transfer function Ty(s), where 
Ty = GnK · (I + GnK)−1 is the complementary sensitivity that associates the total set point voltage δV g

ref  

Figure 5.  Different block diagrams used for the synthesis of the robust fixed-order H∞ controller.
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with the total output voltage δV g
m. According to the robust control design methodology, another complementary 

condition on NP must also be verified in conjunction with the previous RS condition. It is given by24,25

	 ∥We(s) · Sy(s)∥∞ ≤ 1� (27)

where We(s) is a stable transfer function, selected previously by user. Its general form is expressed as below26,27

	
We(s) =

s
Ms

+ ωB

s + ωB · ξs

� (28)

the perfect form to be established for the direct sensitivity function Sy(s) Also, ξs is the desired steady-state 
tracking error. It is essential to point out that the weighting function We(s) is used to penalize the voltage error 
δev  for providing the exogenous output ze (see Fig. 5c). Here, the main aim is to minimize, as much as possible, 
the weighting function output ze, regardless of any change in the exogenous input δV g

ref . Moreover, the transfer 
function Sy(s), where Sy = (I + GnK)−1 is the direct sensitivity that associates the error voltage δev  with the 
total output voltage δV g

m.

Because of the identityTy + Sy = 1, satisfying these two conflicting objectives in the same frequency point 
poses a major challenge for most designers5,6. This in turn leads to finding a specific robust controller among 
existing ones, able to achieve a good NP/RS trade-off. These two conditions must therefore be combined into 
a single one, to provide the “weighted-mixed sensitivity problem”. The problem can be formulated using the 
standard formalism shown in Fig. 5d26. Accordingly, P(s) is the generalized synthesized model including the 
nominal model and the two preceding weighting functions. The main goal is to minimize, as much as possible, 
the H∞-norm of resulting linear fractional transformation LFT, given by the interconnection system between 
both P(s) and K(s). This leads to satisfy the NP/RS trade-off condition, expressed by27,28

	
RS/NP :

∥∥∥Wy(s) · Ty(s)
We(s) · Sy(s)

∥∥∥
∞

≤ γ < 1� (29)

where the parameter γ is the H∞ performance level to be reached. The problem, given by Eq. (29), is solved 
by the MATLAB function hinfstruct, whose controller-order to be synthesized must prior be specified by 
the user through preselecting the dimension of the evolution matrix providing the state representation of 
desired controller. Afterward, the two transfer functions for the two weighting functions We(s) and Wy(s) 
are introduced and the transfer function of the nominal model is then computed from the linear state-space 
representation of the overall small-signal model.

Now, the three preceding transfer functions are used to compute the generalized model P(s) by which the 
weighted-mixed sensitivity criterion is formulated. Its solution resulting the state-space representation of desired 
robust controller. All the above steps must be repeated as the H∞ performance level γ is greater than unity, i.e., 
γ > 1. In this case, other parameters must be chosen for the weighting function We(s), and the preceding steps 
are again repeated until obtaining γ < 1. Once the solution is accepted, the two direct and complementary 
sensitivity functions are computed and the two robustness conditions RS and NP are verified in the frequency 
domain.

Performance assessments of the proposed robust P&O-MPPT strategy
Experimental test description
TThe experimental test was carried out using a set of PV panels placed on the roof of the faculty, located at 
Yildiz University, in Istanbul, Turkey29. There are three types of PV panels, some of them are based on thin-
film technology, others are based on poly-crystalline technology and the remaining ones are based on mono-
crystalline technology. In this paper, only the second PV panel type is considered. Consequently, the SPCS 
to be modeled and then controlled consists of three distinct devices, such as the PV array, the DC-DC boost 
converter, and the variable resistive load. Moreover, the PV array includes four PV panels. Each one is connected 
in series with the other PV panels. The modeling step of the resulting PV array is performed using the equivalent 
electrical circuit, whose set of three key parameters is optimized by the GA. The real-time measurements of 
the actual total current were previously recorded as a function of three real-time measurements of the outdoor 
temperature, solar irradiation, and wind speed of the environment. Next, the performances of the proposed 
robust P&O-MPPT strategy are evaluated and compared, at the STC, with those provided by the improved P&O-
MPPT strategy, which includes in its second stage either the parallel PID controller or the ideal PID controller. 
Finally, the validity of this strategy is verified on a day chosen from the remaining set of real-time measurements. 
These three sets of samples were recorded as part of the experimental test available at the aforementioned faculty, 
in which the existing measurements were collected hourly over one month, starting at 9 a.m. on September 9th, 
2023. A total of 702 samples of total currents and total voltage were collected as a function of the same number 
of samples, collected for solar irradiance using aKipp-Zonen CMP21 pyranometer29, where this last one was 
previously placed at an inclination angle of 41◦ on the roof of this faculty. Similarly, the same number of samples 
were recorded for outdoor temperature using a thermocouple sensor based on the Campbell CS215 instrument29. 
Finally, the same number of samples was also recorded for wind speed using a specific tachymeter. Figure 6 
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therefore shows the image presenting this experimental test, including the various measuring instruments 
required to carry out these real-time measurements29.

Among all previous real-time measurements, the minimal and maximal values corresponding to each real-
time measurement are summarized in Table 1 given as below measuring devices used in the experimental test

Starting from the upper and lower limits summarized in Table 1, it is clear that STC conditions are not reached 
throughout the above-mentioned period. Since the assessment of the performance of any control strategy must 
be carried out in STC, the goal is to design the equivalent electrical circuit that can guarantee the most accurate 
prediction of the overall model in STC. For this purpose, the previous 702 samples are divided into 300 samples 
used to identify the PV model, 200 samples used to validate this model, and finally part of the 202 remaining 
samples are used to verify the performance of the proposed robust P&O-MPPT strategy.

Computing the parameters of the overall model describing the PV array
This aim is achieved through an initial design of the model corresponding to one PV panel based on poly-
crystalline technology. The GA is applied to optimally find the three key parameters of the corresponding 
equivalent electrical circuit using the first set of 300 samples. The GA tuning parameters required for this step 
can be summarized in Table 2, presented as below

Also, the data-sheet corresponding one PV panel can be summarized in Table 3, given as below
Then, the search space corresponding to the constrained optimization problem is chosen after several runs 

of the GA, during which several extensions are performed where the solution is stuck in one or more of the 
saturated constraints. The most appropriate, but not exclusive, choice that avoids any eventual saturation is the 
one given as follows:

	

0.8 ≤ n ≤ 1.5
0.01 ≤ R1

s ≤ 1
670 ≤ R1

p ≤ 800
� (30)

As a result, the best minimization of the fitness function is the one given by Jmin = 0.4226, providing the 
following nominal parameters n = 1.301, R1

s = 0.105 Ω and R1
p = 795.771 Ω, where the nominal total series 

resistance and nominal total shunt resistance are accordingly given by Rg
s = 0.42Ω and Rg

p = 3183.08 Ω 
respectively. Therefore, Fig. 7 depicts the overall model describing the actual PV array. On the left-hand side 
of the overall model, there are two manual switches enabling the selection of PV array functioning at STC, 
providing the nominal MPP position in I-V characteristic. Also, Fig. 8 compares the model’s total current with 
the measured total current using the second set of 200 real-time measurements

Ig
P V

(A) V g
P V

(V ) G(W m−2] T (◦C) ω(m s−1]
Minimal value 0 1.1383 0 13.600 0.2133

Maximal value 8.3811 130.19 759.47 32.712 26.658

Table 1.  Minimal and maximal limits recorded for all real-time measurements during 1 month.

 

Figure 6.  PV panels and measuring devices used in the experimental test.
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Figure 7.  Design of overall model describing the actual PV array using Simulink MATLAB software.

 

Parameter Value Unit

P 1
stc

280 W

V 1
stc

32.29 V

V oc1
stc

39.69 V

Istc1
stc

8.68 A

STC Isc1
stc

9.12 A

α 0.05 %/◦C

β 0.32 %/◦C

Kr 1.468 –

Table 3.  Data sheep characterizing one PV panel based on monocrystalline technology.

 

Parameters Value

 Generation number 60

 TolFun 10−6

 Population size 60

 PlotFcns gaplotbestfun

 Elite count 1.85

 Reproduction  Crossover 0.85

 Mutation function Constraindependent

 Crossover function Scattered

 Direction Forward

 Migration  Fraction 0.22

Table 2.  GA setting parameters to solve the design model problem of the overall PV array.
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From Fig. 8, it is easy to confirm that the GA provides a good minimization of the fitness function, as the three 
resulting key parameters allow building up an acceptable PV model in terms of modeling accuracy. Furthermore, 
this model provides a good prediction of the actual total current despite employing additional samples that were 
not previously utilized in the parameter identification step and are considered as unknown measurements for 
this PV model. Now, thanks to Eqs. (15) and (16), the I-V linearization at STC which corresponds to the overall 
PV model provides the two nominal parameters Rg

eq = 22.155Ω and Eg
eq = 321.47 V  where this last one is 

not considered in determining the overall model of the SPCS due to the application of the small signal principle 
on Eq. (19). Also, applying the GA with other initial generations results in providing other neighboring values of 
the three preceding nominal key-parameters, whose equivalent resistance values are offset from the nominal one 
by the upper limit Rg

eq = 26.586 Ω, and by the lower limit Rg
eq = 17.724 Ω, resulting therefore in a worst-

case uncertainty of ∆Rg
eq = 20% concerning the nominal value.

Computing the parameters of the overall model describing the behavior of the SPCS
When the resistive load to be supplied is chosen by R = 100 Ω. According to Tab.3, the STC value of the total 
load-voltage V g

0  is given by V g
0stc

=
√

V g
stc · Ig

stc · R , yielding also to obtain V g
0stc

= 334.83 V . This leads also 
to obtain the STC value of the duty cycle Dg

stc = 0.61425. Finally, the parameters used for SPCS control can be 
summarized in Table 4, given by

Consequently, when ∆Rg
eq = 0, the linear small-signal nominal model is derived from the uncertain linear 

state-space representation. It is given by

	
ẋm(t) =

(
−2162.7 −47916 0
333.33 0 −128.58

0 2805.4 −72.727

)
· xm(t) +

(
0

−111610
63127

)
· δD(t)� (31)

where the corresponding transfer function is given by

	
Gn(s) = 53479 × 105 · (s + 145.5)

(s + 119.6) · (s2 + 2116 · s + 162.4 × 105)
� (32)

So, it is a nominal model presenting the high static gain Gn(0) = 400.6, from which it is possible to synthesize 
the robust voltage controller using the PID structure, whose parameters are determined by applying the MATLAB 
function PidTuner30. Accordingly, the graphical user interface GUI is opened, in which some frequency-domain 

Parameter C1 C2 L fc
Ig

Lstc

Value 20.87 137.50 3.00 15.00 8.68

Unit µH µH mH KHz A

Table 4.  Parameters used to determine the overall linear uncertain model of the SPCS.

 

Figure 8.  Validation of overall PV model using further real-time measurements.
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specifications must previously be selected for tuning the gains of the voltage PID controller. It depends on 
selecting both the desired bandwidth ωB and the desired phase margin φ. Indeed, the first tuning parameter is 
chosen in a similar to the one used in synthesizing the robust fixed-order H∞ controller, i.e., ωB = 120 rad/s
, while the second tuning parameter is chosen according to the visualization of the resulting step response of 
the closed loop system, where the best one is given by φ = 63◦. In the time-domain specifications, the two 
preceding tuning parameters lead to ensuring the response time Ts = 0.01667 sec., and the robustness ratio of 
63.6%. Finally, the resulting tuning parameters provide only the robust PI controller structure, whose transfer 
function is given by

	
K0(s) = 2.73 · 10−7 + 0.32773

s
� (33)

Computing the parameters of the robust fixed-order H∞ controller
Frequency-domain analysis
In the synthesis step of the robust fixed-order H∞ controller, the uncertain equivalent resistance Rg

eq  must cover 
all possible values ranging from its lower limit Rg

eq = 17.724 Ω up to its upper limit Rg
eq = 26.586 Ω, using 

the step size 0.01. This generates 21 perturbed models and therefore a total of 21 relative errors concerning the 
nominal model. The MATLAB function ucover is then run with the choice of the degree of the RS weighting 
function, thus providing the parameters for the primary weight Wy(s)31. A perfect form can be achieved when 
the curve of σmax [Wy (ωm)] does not exceed the 0dB condition at low frequencies, in particular below a user-
selected pulsation, called ωBT , where ωB ≪ ωBT

5,32. This last one authorizes the level at which the modeling 
errors can be committed during the modeling step of the SPCS behavior5,32.

keeping with the previous restriction, the given Wy(s) is multiplied by a gain of 10, to increase 10 times the 
primary safety margin corresponding to the above-mentioned RS weighting function (see Fig. 9). This leads to a 
obtain ωBT = 2477 rad/s and the desired RS weighting function Wy(s), which is given by

	
Wy(s) =

0.47254 ·
(
s2 + 10360 · s + 4083 × 104)

s2 + 2282 · s + 2114 × 104
� (34)

The next step used for the controller design requires determining the NP weighting specification where the 
corresponding transfer function is previously mentioned in Eq. (28). In the present paper, the parameters 
Ms = 1.25, ωB = 120 rad/s and ξs = 10−3 are chosen to determine the transfer function of We(s), which 
also rewritten as the following form

	
We(s) = 0.8 · (s + 150)

s + 0.12
� (35)

According to Eqs. (34) and (35), the controller design problem is formulated as the weighted-mixed sensitivity 
function where its optimal solution is ensured by the preselected controller-order do (KH(s)) = 3 where the 
MATLAB function hinfstruct is run using 10 random initializations. The NP/RS trade-off condition is verified 

Figure 9.  Presentation of all possible relative modeling errors used to extract the RS condition.
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within the frequency range ωmϵ
(
101 106)

rad/s where the optimal criterion minimization is reached by 
providing the H∞ performance level γ = 0.91191. The resulting transfer function of the robust fixed-order 
H∞ controller is given by

	
KH(s) =

33.767 × 10−5 ·
(
s2 + 221.6 · s + 16300

)
(s + 0.1683) · (s + 104.7) · (s + 202.1)

� (36)

The NP/RS trade-off condition is thus verified in the previous frequency range, leading to Fig. 10.

From Fig. 10, it can be seen that the plot of the maximal singular values of NP/RS condition for the robust 
P&O-MPPT strategy is below the boundary condition, i.e. 0 dB at all frequency points. On the other hand, the 
condition is violated at low frequencies for the standard P&O-MPPT strategy, which can be explained in the 
time domain by obtaining poor reference tracking properties, as well as by a large time required to attenuate 
exogenous effects caused by model uncertainties.

Time-domain analysis
To confirm all the previous findings, in the time domain, the closed loop systems based on the robust PI 
controller and the one based on the robust fixed-order H∞ controller are simultaneously excited by two distinct 
inputs. The first one consists of a unit step applied for 0.1 hours. The aim is to ensure a perfect tracking dynamic, 
characterized by a fast rise time, large stabilization time, acceptable overshoot, and zero steady-state error.

Additionally, the second input consists of a perturbation input, characterized by a bounded energy of 20% 
of the set point input amplitude. It is applied just at the starting time t = 0.05 h, and it is carried on the 
nominal model output. The aim is to ensure a good robustness margin concerning the perturbation input, 
whose attenuation must be guaranteed within a short time range. Knowing that the two preceding dynamics 
characterize the two conflicting objectives, i.e., tracking/regulation, are examined not only for the nominal 
operating state of the SPCS where the corresponding output responses are mentioned using solid lines. Also, 
they are examined in the presence of 21 perturbed operating states where the corresponding output responses 
are outlined using dash lines. Therefore, Fig. 11 compares the NP/RS trade-offs of the two preceding strategies 
in the presence of 21 perturbed models.

According to Fig. 11, the better properties for the two performances and robustness are ensured by the 
proposed robust P&O-MPPT strategy even in the presence of unstructured multiplicative uncertainties. Now, 
the performance assessments are carried out at STC for the two preceding strategies using the closed loop 
system, established by sim-power systems of MATLAB software (see Fig. 12). The control loop, depicted in Fig. 
12, has two manual switches enabling the commutation between the use of the real-time climatic conditions or 
the STC ones. Based on these commutators, the performances of the two preceding strategies can be compared 
in STC using the time range tϵ[0, 0.14] h. Accordingly, the modified P&O algorithm, needed for the first stage 
of the two preceding strategies, is initialized by the STC values for the total current and voltage. Here, the fixed 
step size updating the nominal reference voltage is given by δV = 10−3.

Therefore, Fig. 13 shows the comparison between the voltage error, minimized by the robust PI controller, 
and the one minimized by the proposed robust fixed-order H∞ controller. Also, Fig. 14 compares the reference 
tracking dynamic of the optimal reference voltage, generated by the modified P&O algorithm for the two 
preceding strategies. Figure 15 compares the generated power by the PV array and the consumed power by the 

Figure 10.  Verifying NP/RS trade-off condition by standard and robust P&O-MPPT strategies.
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resistive load using the two preceding strategies and finally Fig. 16 compares the two corresponding duty cycle 
controls

From Fig. 14, it is easy to confirm that the modified P&O algorithm generates the optimal reference voltage 
closest to the one previously recorded at STC, i.e., V opt

ref = Ns · V 1
pv = 129.16 V . This is properly tracked by 

the total voltage based on the proposed robust fixed-order H∞ controller at the starting time t = 0.08 h. On 
the other hand, for the same previous setpoint, the reference tracking dynamic is achieved at the starting time 
t = 0.11 h. This means that an improvement ratio of 37.5% can be guaranteed by the proposed strategy, which 
is therefore considered to outperform as compared to the standard one.

Consequently, the maximal power extraction ratio, ensured by the proposed strategy, is improved 400 times 
when compared to the SPCS that is controlled by the standard P&O-MPPT strategy (see Fig. 15). As already 
mentioned, the nominal value of the duty cycle is given by Dg

stc = 0.61425. Consequently, the proposed strategy 
achieves this value quickly within a stabilization time that starts at t = 0.04 h. In contrast, with the standard 
P&O-MPPT strategy, there is a 300-fold delay when comparing its settling time to the one provided by the roust 
P&O-MPPT strategy. This means that a massive loss of energy extraction can be observed when the SPCS is 
controlled by the standard P&O-MPPT strategy.

The closed-loop system based exclusively on the proposed strategy is finally run during the time t = 12 h 
of a one-day period chosen arbitrarily from one preceding month. the corresponding samples among the 202 
remaining samples found in the third set. In this case, the solar irradiance value is started from zero, passed 
through its high-point G = 696.417 W · m−2 and returned again to zero at the end of the same day. During 
the same period, the resistive load is set at R = 120Ω for the first 7 hours, then reduced to R = 80Ω for the 
remaining five hours. Similarly, the outdoor temperature value is initially recorded by T = 17.505◦C , passed 
through its maximal value T = 22.745◦C , then returned to the value T = 20.083◦C  at the end of the same 
day. Finally, the wind speed value is counted from ω = 4.533 m/s and then finished by ω = 12.7617 m/s
. As a result, Fig. 17 clearly shows the climatic evolution of the three preceding climatic parameters during the 
same day. Also, Fig. 18 represents the power produced by the PV array and the power consumed by the variable 
resistive load. Finally, Fig. 19 shows the duty cycle control generated within 12 hours by the proposed robust 
fixed-order H∞ controller.

According to Fig. 18, the two powers generated and consumed have the same shape as the one of the measured 
solar irradiances. Here, the curve of the consumed power is subjected to a rapid change at time t = 7s due to 
the sudden modification of the resistive load, which has suddenly decreased by a ratio of 40% with respect to 
the corresponding nominal value. Therefore, thanks to the robust fixed-order H∞ controller, the closed-loop 

Figure 11.  Comparison of the model output in the presence of 21 perturbed model uncertainties.
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system becomes insensitive to this external change, where the robust P&O-MPPT strategy correctly detects 
the sudden change coming from the measured total voltage, providing the required optimal reference voltage 
through its first phase using the modified P&O algorithm, The proposed controller, in turn, enables the duty 
cycle to increase from 0.55 to 0.455 as the load is reduced (see Fig. 19). Knowing that the nominal value of 
this resistive load is already introduced in the nominal model computation. Thanks to the 10-fold increase 

Figure 13.  Comparison of the resulting voltage errors for standard and robust P&O-MPPT strategies.

 

Figure 12.  Performance assessments at STC for the two strategies using sim-power systems.
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in the initial safety margin resulting from the initial quantification of unstructured relative uncertainties, this 
new resulting margin can even cover significant variations in this resistive load, even if these variations are not 
taken into account when developing the RS robustness condition. As a result, the resulting robust controller is 
always able to maintain the correct balance between performance and robustness, taking into account not only 
real-time measurements recorded over one day but also those associated with any other unpredictable weather 
conditions.

Figure 15.  Comparison of the generated and consumed powers for standard and robust P&O-MPPT 
strategies.

 

Figure 14.  Comparison of the reference tracking dynamics for standard and robust P&O-MPPT strategies.
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Conclusion
In this paper, the design of the new uncertain model describing the actual behavior of the PV array was 
presented, based on real-time measurements such as outdoor temperature, solar irradiance, and wind speed. 
The equivalent electrical circuit, incorporating three key parameters, has been developed and their parameters 
has been optimized using the GA. The resulting uncertain model was then linearized at STC, and the robust H∞ 
controller was synthesized accordingly. This controller was cascaded with the modified Perturb and Observe 
(P&O) algorithm, resulting in the robust P&O-MPPT strategy. The performance and closed-loop stability of both 
the standard and proposed P&O-MPPT control strategies were evaluated and compared under STC as well as 
under varying climatic conditions. Experimental results confirm the effectiveness of the proposed robust P&O-
MPPT strategy, which achieves the best tradeoff between reliability and power output under sudden changes in 

Figure 17.  Measured three climatic conditions within the 22nd day of the experimental trial.

 

Figure 16.  Duty cycle controls generated by standard and robust P&O-MPPT strategies.
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variable load resistance. However, the main limitation of the proposed control strategy arises in its initial stage, 
where the fixed-size step for updating the reference voltage is chosen manually, which can be problematic when 
climatic conditions change suddenly. Another limitation is found in the second stage, where other uncertain 
parameters, especially those related to the DC-DC boost converter, could affect the performance/robustness 
trade-off. As a suggestion for future research, we recommend to implement a fuzzy logic control law to generate 
a variable step size for updating the reference voltage. Additionally, we propose the use of self-tuning controller 
structures that adapt to varying climatic conditions and unpredictable load values.

Figure 19.  Duty cycle control generated by the fixed-order H∞ controller during 12 h of one arbitrary day.

 

Figure 18.  Generated and consumed powers given for 12 hours of one arbitrary day.
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Data availability
All data generated or analyzed during this study are included in this published article.

Appendix 1
See Fig. 20.
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