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In engineering applications, the bearing faults diagnosis is essential for maintaining reliability and 
extending the lifespan of rotating machinery, thereby preventing unexpected industrial production 
downtime. Prompt fault diagnosis using vibration signals is vital to ensure seamless operation of 
industrial system avert catastrophic breakdowns, reduce maintenance costs, and ensure continuous 
productivity. As industries evolve and machines operate under diverse conditions, traditional fault 
detection methods often fall short. In spite of significant research in recent years, there remains a 
pressing need for improve existing methods of fault diagnosis. To fill this research gap, this research 
work aims to propose an efficient and robust system for diagnosing bearing faults, using deep and 
Shallow features. Through the evaluated experiments, our proposed model Multi-Block Histograms 
of Local Phase Quantization (MBH-LPQ) showed excellent performance in classification accuracy, and 
the audio-trained VGGish model showed the best performance in all tasks. Contributions of this work 
include: Combine the proposed Shallow descriptor, derived from a novel hand-crafted discriminative 
features MBH-LPQ, with deep features obtained from VGGish pre-trained of Convolutional Neural 
Network (CNN) using audio spectrograms, by merging at the score level using Weighted Sum (WS). 
This approach is designed to take advantage of the complementary strengths of both feature models, 
thus enhancing overall bearing fault diagnostic performance. Furthermore, experiments conducted 
to verify the approach’s performance is assessed based on fault classification accuracy demonstrated 
a significant accuracy rate on two different noisy datasets, with an accuracy rate of 98.95% and 100% 
being reached on the CWRU and PU datasets benchmark, respectively.
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Efficient early fault diagnosis in rotating machinery is crucial for reducing maintenance expenses, ensuring 
equipment availability and reliability, and expediting decision-making regarding replacements and repairs, 
thereby enhancing productivity and safety1. Maintenance strategies are typically classified into three main 
categories: corrective maintenance (CreM), preventive maintenance (PveM), and predictive maintenance 
(PdiM). CreM is very costly because it is only implemented after machines break down, requiring production 
to stop for replacing defective parts. PveM is the process of performing regularly planned and scheduled 
maintenance tasks to prevent unexpected breakdowns in the future. Although effective, it often requires routine 
preventative measures that may not be unnecessary, resulting in increased maintenance costs. PdiM relies 
on continuous monitoring of equipment condition through the use of predictive Artificial Intelligence (AI) 
techniques to track and evaluate the functional integrity of equipment operations in real time. These approaches 
enable maintenance actions to be predicted based on the actual condition of the equipment. Pdim is one of the 
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most important maintenance strategies, as it helps extend the operational life of the machines and maintain their 
performance levels2.

Fault diagnosis systems mainly focus on detecting, isolating and identifying various faults, and with the 
advancement of technology, the ability to store system operating data has evolved, leading to the enhancement 
of traditional diagnostic methods and the emergence of artificial intelligence techniques. These AI techniques 
enable the analysis of system data, resulting in more effective and accurate fault diagnosis3. Failures of rotating 
machines, including induction motors, can be categorized into four main categories: Rotor faults, bearing faults, 
stator-related faults, and other faults4. The bearing is a crucial component in rotating machinery, playing a vital 
role in its operation. According to induction motor reliability studies by IEEE and Electric Power Research 
Institute (EPRI), bearing faults are listed as the leading cause of failure, accounting for 41% to 44% of reported 
faults. Figure 1 shows the different percentages of faults according to the EPRI and IEEE standards5–9.

Rolling element bearings (REBs) are often used under extremely harsh conditions, including high pressures, 
high speeds, and high temperatures, which expose them to various failure states that can lead to system downtime, 
significant economic losses, and serious accidents10–12. Bearing deterioration can lead to vibrations that degrade 
the machine’s performance and affect its ability to bear loads and perform tasks effectively, thus reducing the 
life of the machine. Without promptly maintenance, these issues can escalate into catastrophic malfunctions. 
Such malfunctions not only result in extended machine downtime and high repair costs but also pose significant 
safety risks in the work environment13,14.

Condition monitoring using vibration analysis approach is attractive due to its non-intrusive sensors, 
relatively low expense, and ability to detect wide range of machine faults based on specific vibration patterns. 
The frequencies of these vibrations vary depending on the type and severity of the faults, while the intensity 
of these vibrations helps assess the severity of the problem. Such information enables the implementation of 
appropriate maintenance procedures based on the vibration analysis of the machines15. A comprehensive and 
accurate evaluation of the severity of faults is crucial to achieving reliable and accurate diagnostic results16,17. 
Accurately extracting fault features is crucial for achieving accurate diagnosis and obtaining a comprehensive 
understanding of the nature and underlying causes of faults. This helps reducing maintenance time, enhance 
overall system performance, and lower long-term maintenance and operational costs18.

To prevent the negative effects caused by bearing degradation, it is crucial to monitor their health status and 
accurately forecast their remaining useful lifetime (RUL). This proactive approach facilitates the timely execution 
of predictive maintenance strategies aimed at restoring bearings to optimal performance levels19,20. With an 
increasing focus on improving the reliability of industrial products, the Prognostics and Health Management 
(PHM) approach has emerged as a pivotal technology in the Fourth Industrial Revolution. It enhances the 
operational safety and cost-effectiveness of engineering systems by preventing sudden failures and potential 
risks. This approach is integral for ensuring the availability and reliability of industrial products and systems, 
encompassing fault detection, identification of fault type and location (fault diagnosis), and prediction of 
future health status and remaining useful lifetime of machines.By addressing these areas, PHM extends system 
longevity and performance, reduces unplanned downtime, and lowers maintenance costs, establishing itself as a 
cornerstone of modern industrial maintenance practices21–23.

In the modern industrial era, there is an urgent need for intelligent systems capable of providing accurate and 
efficient fault diagnosis. These systems leverage advanced technologies such as machine learning, deep learning, 
and pattern recognition to significantly improve fault detection accuracy, facilitating the implementation of 
predictive maintenance, and enhancing the ability to efficiently diagnose faults. Such technological advancements 
are especially crucial for the early detection of potential problems in roller bearings, which are essential 
components in many mechanical systems. Early detection of bearing failures helps prevent sudden breakdowns, 
reducing downtime, and optimizing maintenance schedules. Therefore, a robust and effective fault diagnosis 
system is indispensable to support proactive maintenance strategies, leading to increased productivity, reduced 

Fig. 1.  IEEE and EPRI faults studies.
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maintenance costs and improved overall system performance. The integration of these smart technologies not 
only ensures the reliability and longevity of industrial machines, but also enhances production efficiency, reduces 
costs, and contributes to improving the overall performance of industrial systems24.

In recent years, technological advancements have led to a significant leap in relying on shallow and deep 
learning-based diagnosis methods across wide range of fields, with particular emphasise on machinery faults 
diagnosis23 ,25,26. Among these advancements,the diagnosis of faults in induction motors has remarkably 
benefited from deep learning techniques. These methods are distinguished not only by their ability to discover 
hidden patterns in complex data, but also by their ability to provide accurate diagnoses even in cases where 
signs of malfunction are invisible. This progress has increased the confidence of both academia and industry 
regarding the adoption of deep learning techniques to develop advanced diagnostic systems that are highly 
accurate and reliable. The ability to handle and analyze large amounts of data using advanced methods enables 
these systems to predict malfunctions before they occur. This capability helps improve maintenance efficiency, 
reduce unplanned downtime, and positively influences overall productivity.

Effective integration of shallow and deep learning methods is necessary to leverage the strength of both 
shallow and deep feature extraction methods in order to obtain an effective and robust diagnostic model. This 
article proposes a novel method for diagnosing bearing faults in motors using vibration signals. The proposed 
model incorporates feature learning based on both shallow features (Sh-F) and deep features (D-F). Processed 
vibration signals are converted into visual representations, which are then used as inputs for features extraction 
and classification using both shallow and deep feature extraction models. To avoid missing features and enhance 
classification accuracy, we introduce a new shallow descriptor called Multi-Block Histograms of Local Phase 
Quantization (MBH-LPQ). This descriptor is designed to be integrated with the most powerful classifier in 
feature-based deep classification models. Additionally, spectrograms, which provide a time-frequency analysis 
of vibration signals, are widely utilized in deep learning frameworks. However, the application of visual texture 
features technique within shallow learning models, which rely on manually extracted features, has not been 
thoroughly investigated. To the best of our knowledge, researches on applying visual texture feature techniques 
(Shallow features) to spectrum images for bearing faults diagnosis is still rare. Our research addresses this gap 
by introducing an innovative method for bearing fault diagnosis that significantly enhances both accuracy and 
efficiency. This method incorporates a sequence of sophisticated pre-processing techniques, converting vibration 
signals into visual representations, and extracts distinctive features from spectrogram images. It also leverages 
cutting-edge deep learning algorithms and visual texture feature techniques.

We have made several key contributions and conducted extensive testing to validate the proposed bearing 
faults diagnosis method using two challenging open-source datasets provided by: Case Western Reserve 
University (CWRU), USA27 and University of Paderborn (PU), Germany28. This paper investigates a novel 
approach for bearing faults diagnosis that integrates shallow features and deep features extraction and fusing 
them as well. The proposed models demonstrates a superior capability for bearing faults diagnosis. The principal 
contributions of our study are summarized as follows: 

	1.	� We introduce a new shallow feature descriptor named Multi-Block Histograms of Local Phase Quantization 
(MBH-LPQ). This descriptor captures the structural details of spectrogram images by segmenting them into 
b sub-blocks.

	2.	� The proposed diagnosis method utilizes a non-linear subspace learning approach, Exponential Discriminant 
Analysis (EDA). This approach is carefully designed to address the complexities of bearing fault diagnosis.

	3.	� We implement a score-level fusion through Weighted Sum (WS) to improve the accuracy of the proposed 
diagnosis model. This fusion strategy combines shallow features derived from the proposed MBH-LPQ de-
scriptor with deep features obtained from pretrained VGGish. By leveraging the complementary strengths of 
both feature types, this approach aims to improve overall performance.

The remainder of this paper is structured as follows: the second section 2 reviews the related work in the field. 
The third section 3 details the methodology employed in this study, including a description of the proposed 
MBH-LPQ descriptor. The fourth section 4 outlines the experimental setup and provides a comprehensive 
analysis and discussion of the results. Finally, The last section 5 concludes the paper and suggests directions for 
future research.

Related works
In recent years, deep learning has become an effective means of addressing various diagnostic challenges, 
especially in the field of image processing. However, traditional computer vision techniques, which have been 
steadily evolving by researchers, continue to receive attention from researchers29. Where the use of traditional 
techniques derived mainly from hand-made features such as local binary pattern (LBP) technique to diagnose 
bearing faults as stated in the following studies:30–34. Many studies based on signal processing techniques have 
also been conducted, including time series analysis, frequency analysis, and time-frequency analysis using 
decomposition, deconvolution, and wavelet transform methods35–41. However, these techniques still face the 
challenges such as noise suppression, which leads to loss of fault features information. Therefore, to address 
the various challenges facing traditional diagnostic techniques, the trend towards using deep learning was a 
top priority, as many algorithms have been developed to diagnose bearing faults using deep learning. Although 
these techniques have led to a qualitative leap in the world of fault diagnosis in the era of technology, there is 
still a need for traditional techniques, which forced researchers to combine the two approaches, as stated in 
Wang’s study42, where to improve the accuracy of diagnosing bearing faults, the author presented a method that 
combines the Slime Mould Algorithm (SMA), Variational Mode Decomposition (VMD), and a Convolutional 
Neural Network-Long Short-Term Memory (CNN-LSTM) model. This integrated approach has shown 
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significant superiority in prediction accuracy over using each model independently. Chang et al.43, introduced 
a novel approch based on Osprey-Cauchy-Sparrow Search Algorithm (OCSSA) and improved variational mode 
decomposition combined with convolutional neural network bidirectional long short-term memory (CNN-
BiLSTM). This method called OCSSA-VMD-CNN-BiLSTM. This research tackles the difficulties presented by 
high levels of noise and the nonstationary nature of vibration signals, aiming to improve the effectiveness and 
accurate identification of fault diagnosis for rolling bearings in electric motors. Nishat and Kim44, presented a 
model framework for bearing fault classification based on motor current signal where features were extracted 
using Discrete Wavelet Transform (DWT) and then the bearing fault condition was classified using two ensemble 
Machine Learning (ML) classifiers extreme Gradient Boosting (XGBoost) and Random Forest (RF). The authors 
demonstrated that this method is effective in fault classification. Siddique et al.45, presented a novel methodology 
for diagnosing bearing faults using Mel-transformed scalograms derived from vibration signals. The process 
involves dividing the signals into windows and processing them through a Mel filter bank to convert them into 
a Mel spectrum, followed by accurate classification using an artificial neural network optimized with the FOX 
optimizer algorithm. Naimat et al46. ,investigated the use of CWT to convert raw data into two-dimensional 
images for diagnosing three types of faults: bearing, tool, and gear faults. In their study, a modified AlexNet 
architecture was employed for feature extraction, while the ant colony optimizer (ACO) was utilized to retain 
the most discriminative features.

Proposed methodology
Our bearing fault diagnosis framework, illustrated in Figure 2, comprises five essential stages. This section 
provides a detailed explanation of each stage. The process begins with data pre-processing of healthy and faulty 
signals collected from induction motor parts depicted in Figure 3, where continuous vibrational waveforms 
are normalized and segmented into samples, which are then divided into training (80%) and testing (20%) 
sets. These signals are subsequently converted into visual data representations using Log Mel-spectrograms. For 
feature extraction, we employ a combination of shallow texture descriptors, including the newly proposed MBH-
LPQ descriptor, alongside pre-trained deep CNN models such as VGG16 (trained on images) and VGGish and 
YAMNet (trained on audio). After feature extraction, we utilize Exponential Discriminant Analysis (EDA) for 
dimensionality reduction and classification, with cosine similarity used for comparison. In the final stage, we 
combine the MBH-LPQ descriptor that achieved the highest classification accuract among the various shallow 
texture descriptors with the best-performing CNN model (VGGish), through a Weighted Sum (WS) at the score 
level, enhancing the overall diagnostic accuracy. This section offers an in-depth explanation of each stage.

Log Mel-Spectrogram representation of continuous vibrational waveforms
Continuous vibrational waveforms are converted into spectrograms using Short-Time Fourier transform (STFT) 
and log transformation to obtain a slope spectrogram. A spectrogram represents the frequency content over time 
of a given signal. A slope spectrogram converts a logarithmic scale to high frequencies while maintaining a 

Fig. 2.  Block diagram of the proposed fault diagnosis method.
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linear scale to low frequencies. Spectral representation reduces frequency components to a specified number of 
slope frequencies. After initial tests, the spectrogram representation was preferred due to its compact frequency 
dimension, with most errors located within the low frequency range47. In this subsection, the crucial stages of 
data pre-processing are outlined. The foremost step prior to the transformation of signal vibration data into 
an image format is normalization. Inherent variations in the amplitude of signal vibrations, even within the 
same signal category, arise from differing recording conditions. To achieve uniformity, we normalized the signal 
vibrations by subtracting the mean and then scaling the amplitude to fit within the range of [-1, 1], as detailed 
in Equation 1.

	
x = x − mean(x)

max(abs(x)) � (1)

After normalization, the audio signal undergoes transformation into visual representations via the Mel-
Spectrogram technique. The spectrogram X(k,t) is generated by applying the windowed STFT to the input 
signal, a process meticulously defined in Equation 248.

	
X(m, t) =

N−1∑
n=0

x[n]w[n − t]e− 2πimn
N , m = 0, . . . , N − 1� (2)

Within this context, x[n] denotes the input vibration signal, N signifies the length of the window, w[n] corresponds 
to the Hamming window function, and m represents the frequency index, which is measured in hertz (Hz).

The Mel spectrum is derived by applying the STFT to each frame, which converts the energy/amplitude 
spectrum from a linear frequency scale to a logarithmic Mel scale. The transformed data is then processed 
through a filter bank to extract the eigenvectors. For each tone with an actual frequency f, measured in Hertz 
(Hz), a perceived pitch is assessed on a scale termed the Mel scale, as specified in Equation 21.

	
fmel = 2595 · log10

(
1 + fHz

700Hz

)
� (3)

Extraction of discriminant features
The extraction of discriminative visual features from images is a critical aspect of various recognition tasks, 
serving as the foundation for recognition systems and computer vision applications, particularly in the domain 
of vibration signal analysis49. In image classification, the quality of an image’s representation whether through 
local textural details or learned features plays a significant role in the effectiveness of the method50. Recent 
studies have demonstrated that visual features can outperform traditional audio features, such as Mel-Frequency 
Cepstral Coefficients (MFCC)51, Perceptual Linear Prediction (PLP)52, and Constant Q Cepstral Coefficients 
(CQCC)53, in signal-based classification tasks. In this context, we introduce a novel approach for extracting 
efficient and discriminative features from spectrogram images. Our method employs a fusion of deep and 
shallow features, specifically designed for bearing fault diagnosis. This is achieved using a Convolutional Neural 
Network (CNN) enhanced by transfer learning, combined with traditional shallow texture descriptors, including 
the proposed MBH-LPQ. A detailed description of each descriptor is provided below:

Traditional shallow texture descriptors
In this subsection, we elaborate on Three local descriptor methods of shallow features: Local Binary Patterns 
(LBP), Local Derivative Pattern (LDP) and Local Phase Quantization (LPQ).

1. Local binary pattern (LBP)54: LBP integrates the analysis of local structures with the analysis of 
occurrences. This method characterizes each image pixel, denoted as qc, using a binary pattern. This pattern 
is derived from the difference in grey level values between the pixel qc and its surrounding pixels in a circular 

Fig. 3.  Structure of an induction motor.
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neighborhood, defined by a specified radius R centered at qc as illustrated in Figure 4. In the fundamental form 
of this approach, the LBP operator for a given neighborhood in the image is defined as follows:

	
LBPP,R(qc) =

P −1∑
p=0

s(x)2p� (4)

Where, x represents the difference between the intensity levels of the neighboring pixels, denoted as qp and 
the central pixel qc, within a circular neighborhood characterized by a radius R and P neighboring pixels. 
Furthermore, s(x) is defined as:

	
s(x) =

{ 1 if x ≥ 0
0 otherwise � (5)

2. Local Derivative Pattern (LDP)55: LDP is an extension of the Local Binary Pattern (LBP) that captures 
more complex local textures by considering directional information in the image. This descriptor encodes the 
relationship between a central pixel and its surrounding neighbors using directional derivatives, enhancing the 
ability to detect detailed patterns and making it more robust against noise.

The LDP operator works by calculating first-order derivatives of pixel intensities along specific directions (0◦

, 45◦, 90◦, and 135◦) relative to the central pixel A0 as shown in Figure 5. The first-order derivatives are defined 
as follows:

	 I ′
α(A0) = I(A0) − I(Ai)� (6)

where I(A0) and I(Ai) are the intensity values of the central and neighboring pixels, respectively, and α 
represents the directional angle (0◦, 45◦, 90◦, 135◦).

The second-order LDP, LDP 2
α(A0), encodes the co-occurrence of these derivatives between the central pixel 

and each of its eight neighbors using a binary coding function. This function produces binary codes that reflect 
the gradient change patterns in a local region, providing a richer representation than LBP. Mathematically, the 
second-order LDP descriptor is given by:

	
LDP 2

α(A0) =
8∑

i=1

f(I ′
α(A0), I ′

α(Ai))� (7)

Fig. 5.  LDP Operator illustration.

 

Fig. 4.  LBP Operator illustration.
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where the function f  is defined as:

	
f(I ′

α(A0), I ′
α(Ai)) =

{
0, if I ′

α(Ai) > 0 and I ′
α(A0) > 0

1, otherwise � (8)

This binary pattern captures the directional intensity variations in the neighborhood, allowing LDP to effectively 
describe complex textures and improve performance in tasks like image recognition, where subtle variations are 
crucial.

3. Local Phase Quantization (LPQ)56: The LPQ descriptor, is utilized as a spatial blur-insensitive texture 
analysis method. In the LPQ approach, the STFT is first applied to a blurred image, represented as g(x, y). This 
transformation is performed over a local neighborhood defined by Nx and Ny  with a size of M × M  as shown 
in Figure 6. The transformation is given by the following equation:

	

F (u, v) =
∑

x∈Nx

∑
y∈Ny

g(x, y)e−j2π
(ux+vy)

M � (9)

In the LPQ method, four complex coefficients are extracted for each pixel, corresponding to specific frequency 
points: u1 = (a, 0), u2 = (0, a), u3 = (a, a), and u4 = (−a, a). These coefficients are used to quantize the sign 
of the real (R) and imaginary (I) parts of each Fourier coefficient, as shown:

	 C =[F (u1), F (u2), F (u3), F (u4)] � (10)

	 K =[R{C}, I{C}] � (11)

The quantization is performed according to the rule:

	
qi =

{ 1, if Ki ≥ 0
0, if Ki < 0 � (12)

where a is a frequency parameter set to the smallest non-zero frequency, 1/M . The resulting eight binary values, 
qi, are then combined into a single integer in the range of 0 to 255 using the following equation:

	
flpq =

8∑
i=1

qi2i−1� (13)

This representation effectively encodes the local phase information of the image, making LPQ highly robust to 
image blurring while preserving important texture details.

Deep features based transfer learning
In this part, we elaborate on two types of deep features: YamNet and VGGish, both pre-trained using spectrogram 
images. Additionally, we provide details on the VGG16 model, which has been pre-trained on object images.

1. VGGish: The VGGish architecture, introduced in 201757, was designed for large-scale audio classification 
tasks. This model was trained on the Youtube-100M dataset, which comprises 5.24 million hours of videos. 
To process the audio data, it undergoes segmentation into non-overlapping frames of 960 milliseconds. 
Subsequently, two dimensional 96 × 64 log-mel spectrograms are generated via a time-frequency conversion 
process using the STFT and 64 mel-spaced frequency bins integration58. The VGGish architecture consisting of 
62 million weights, illustrated in Figure 7.

Fig. 6.  LPQ Operator illustration.
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2. VGG-16: The VGG architecture, proposed by Visual Geometry Group, achieved first leading position in 
the localization and the second position in the classification in ILSVRC 2014. Notably, the VGG16 variant of 
this architecture is characterized by a composition of 13 convolutional layers wherein small 3x3 kernels and 2x2 
polling layers are employed, followed by 3 fully connected layers. The use of small size kernels helped to increase 
the depth of the network which has 138 million parameters59. The VGG-16 architecture is depicted in Figure 8.

3. YamNet: YamNet (Yet Another Mobile Network) is a pretrained deep neural network developed for 
audio analysis tasks, based on the MobileNetV1 depthwise-separable convolution architecture60,61. As shown 
in Figure 9, YamNet comprising 27 convolutional layers, each followed by a ReLU activation layer and a 
batch normalization layer, as well as average pooling layers, fully connected layers, softmax layer, and a final 
classification layer. YamNet is trained on the Audio Set YouTube corpus62 to predict 521 different audio event 
categories. It processes an input mel spectrogram with dimensions of (48, 32, 32)63.

Proposed MBH-LPQ model features
Our work focuses on developing a reliable system for diagnosing various bearing faults using shallow features. 
As shown in Figure 10, the proposed framework consists of several key steps. First, We preprocessed the original 
vibration waveforms by normalizing and splitting them into samples. The next step involves generating a log 
Mel-spectrogram image from the processed signal. We then analyze the visual texture of this spectrogram using 
the Local Phase Quantization (LPQ) method. Following LPQ analysis, we divide the LPQ-processed image into 
b non-overlapping sub-blocks. For each sub-block, we compute a 256-bin histogram that captures the local 
texture information. These histograms are then concatenated to form a single feature vector of size b × 256. 
The final step involves aggregating these feature vectors to create the MBH-LPQ descriptor, which encapsulates 
the texture information of the entire image. The mathematical steps of this process are detailed in Algorithm 1.

Fig. 8.  VGG16 architecture.

 

Fig. 7.  VGGish architecture.
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Fig. 10.  Proposed MBH-LPQ features extraction model.

 

Fig. 9.  Yamnet architecture.
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Algorithm 1.  Proposed MBH-LPQ Model Features.

Linear subspace projection and dimensionality reduction
After extracting features (both deep and shallow features) and concatenating histograms of each block into a 
vector for our proposed descriptor MBH-LPQ, which represents the characteristics of the spectrogram images, 
we apply principal component analysis (PCA) to reduce the dimensionality and then apply the exponential 
discriminant analysis (EDA) algorithm for dimensionality reduction, feature projection, and classification of 
these vectors. EDA, a robust supervised technique introduced by Zhang et al.64, is an exponential extension 
of Linear Discriminant Analysis (LDA)65. The primary objective of this method is to minimize intra-class 
variability while maximizing inter-class variability, thus enhancing the discriminative power of the features. 
The transformation from LDA to EDA is accomplished by introducing an exponential function to the LDA 
equation, as illustrated in equation 14. This modification, as detailed in equation 18, has demonstrated significant 
improvements in several studies66,67.

	 Sbv = λSw � (14)

In the above equation, Sb and Sw  denote the inter-class and intra-class variability matrices, respectively. These 
matrices are mathematically defined as:

	
Sb =

S∑
s=1

(ws − w̄)(ws − w̄)T � (15)

Scientific Reports |         (2025) 15:9270 10| https://doi.org/10.1038/s41598-025-93133-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


	
Sw =

S∑
s=1

1
ns

ns∑
i=1

(ws
i − w̄s)(ws

i − w̄s)T � (16)

Here, s represents the class, ns is the number of feature vectors ws within each class s, and w̄s is the mean 
feature vector for each class, calculated as:

	
W̄s = 1

ns

ns∑
i=1

Ws
i � (17)

Applying the exponential function to both sides of the LDA equation results in the EDA method, as shown 
below:

	 exp(Sb)v = λ exp(Sw)� (18)

Matching and fusion
After dimensionality reduction, the feature vector undergoes a matching process utilizing the cosine distance 
metric within a discriminant subspace, as defined in Equation 19.

	
cos (Vt1 , Vt2 ) =

VT
t1 · Vt2

∥Vt1 ∥ · ∥Vt2 ∥
� (19)

Here, Vt1  and Vt2  represent vectors, Vt1 · Vt2  is the dot product of vectors Vt1  and Vt2 , and ∥Vt1 ∥ and ∥Vt2 ∥ 
are the magnitudes of vectors Vt1  and Vt2 , respectively.

This metric is highly effective in comparing feature vectors, highlighting the discriminative enhancement 
achieved through the integration of the EDA algorithm. In our Bearing Fault Diagnosis framework, we employ 
the Weighted Sum (WS) fusion technique to combine deep and shallow features68. The WS method is chosen 
for its demonstrated ability to enhance system performance by strategically merging the two types of features69. 
This approach capitalizes on the unique strengths of both deep and shallow features, significantly improving the 
accuracy of our diagnostic system. The formula for WS fusion is presented as follows:

	
W S =

K∑
i=1

wi · si� (20)

where W S denotes the aggregated weighted sum, K  represents the total number of inputs, wi is the weight 
assigned to the i-th input, and si corresponds to the value or measurement derived from the i-th input.

Experimental setup
This section details the experimental procedures carried out on two datasets: the CWRU dataset and the PU 
dataset. First, we provide a comprehensive description of these datasets. Following this, we outline the protocols 
employed during both the training and testing phases, including the various parameter settings used. These 
parameters encompass the conversion of continuous vibrational waveforms to images and the subsequent feature 
extraction stages. Finally, we present the experimental results, accompanied by discussions and comparisons 
with existing methods. All experiments were conducted on an HP laptop running Windows 10 64-bit, powered 
by an Intel(R) Core(TM) i7-6600U CPU @ 2.60GHz (4 cores) with 16 GB of RAM. MATLAB R2021a was used 
for data processing and the development of the neural network models.

Datasets description
In this section, we conducted extensive evaluation experiments using two popular bearing benchmark datasets, 
namely the Case Western Reserve University (CWRU)27 and Paderborn University (PU)28 datasets, to verify 
the effectiveness of our proposed fault diagnosis approach. These datasets include artificially generated and real 
defect data with varying damage levels, methods, diameters, and health statuses. The details of these datasets are 
presented below:

CWRU dataset
In the CWRU Bearing Dataset, experiments were conducted using a 2-hp Reliance Electric motor, as depicted 
in Figure 11. Single-point faults were introduced to the test bearings using electro-discharge machining. Fault 
diameters of 0.007, 0.014, 0.021, 0.028, and 0.04 inches were introduced separately at the inner race, ball, and 
outer race. Accelerometers were utilized to gather vibration data, positioned at the 12 o’clock position on both 
the drive end and fan end of the motor housing. Since outer race faults are fixed faults, accelerometers were also 
used at the 3, 6, and 12 o’clock positions. Data were collected digitally at a rate of 12,000 samples per second.

Additionally, data was gathered at a rate of 48,000 samples per second specifically for detecting faults in the 
drive end bearing. The vibration signals were acquired utilizing a 16-channel DAT recorder. Data on speed and 
horsepower were collected through a torque transducer/encoder and were manually recorded. For faults with 
diameters of 7, 14, and 21 mils, SKF bearings were employed, while NTN equivalent bearings were used for 
faults measuring 28 mils and 40 mils, selected based on operational conditions and fault sizes. In this study, 
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fault conditions are classified into nine groups, resulting in a dataset consisting of ten classes: one for normal 
operation and nine for faulty conditions. Signals collected at a sampling frequency of 48,000 samples per second 
were considered, under a condition of 1772 rpm with a load of 1 horsepower (hp). The details of the data used 
are presented in Table 1.

PU Dataset
In the Paderborn University (PU) bearing dataset, the experimental bearing test setup consists of an electric 
motor, a torque measurement shaft, a rolling bearing test module, a flywheel, and a load motor, as shown in 
Figure 12. The test rig utilizes a 6203 bearing operating under constant conditions. The vibration signals were 
captured by measuring the acceleration of the bearing housing at the adapter located at the upper extremity of 
the rolling bearing module, with a sampling rate of 64,000 samples per second. This dataset encompasses data 
of 32 experimental bearings, categorized into three distinct groups: healthy state, artificially induced defects, 
and real defects generated to simulate accelerated lifetime conditions. For the purpose of this study, the dataset 
is divided into ten classes: one representing healthy conditions and nine representing defective conditions. The 
details of the operating settings and descriptions of the data used are presented in Tables 2 and 3, respectively.

Protocol and parameters settings
In this paper, for the CWRU dataset, a total dataset consisting of ten classes was prepared, one for normal 
operation and nine for faulty conditions. Details of the description of the data used are provided in Table 1. To 
evaluate the proposed approach, each continuous vibrational waveforms is divided into input parts containing 
100 samples. Each sample containing 4710 data points, resulting in a total of 1,000 samples across the 10 classes. 

Labels Condition Fault diameter (inches) Training samples Test samples

1 H - 80 20

2 0.007 80 20

3 IRF 0.014 80 20

4 0.021 80 20

5 0.007 80 20

6 BF 0.014 80 20

7 0.021 80 20

8 0.007 80 20

9 ORF 0.014 80 20

10 0.021 80 20

Total samples

800 200

H:Healthy
IRF:Inner Race Fault
BF:Ball Fault
ORF:Outer Race Fault

Table 1.  Description of classes size and labels (CWRU dataset).

 

Fig. 11.  Test Rig of CWRU Dataset.
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Although training size plays a crucial role in diagnostic performance, as highlighted in70, this study adopts an 
80/20 split for both datasets, following standard benchmark practices to ensure a fair comparison with existing 
works. Specifically, for the CWRU dataset, 800 samples were allocated for training and 200 for testing. As for 
the PU dataset, which also consists of ten classes: one class represents the healthy state and nine represent the 
faulty state. Each class consists of 17 bearing vibration signals. These signals were divided into 340 samples 
per class, with each sample containing 12,500 data points. During the preparation phase, we use random 
partitioning to divide the dataset into training and test sets. 80% of the samples are randomly selected for the 
training set, while the remaining 20% are reserved for testing. Details of the operating settings and descriptions 
of the data used are presented in Tables 2 and 3, respectively. The vibration waveforms are transformed into 
Log-Mel spectrogram images, which provide a three-dimensional representation of the signal. The horizontal 
axis represents time variation, the vertical axis displays the frequency spectrum, and the intensity of each point 
in the image reflects the amplitude of the signal. In our study, spectrograms are generated using a Hamming 
window function with a 50% overlap between frames, preventing information loss at the edges. The Fast Fourier 
Transform (FFT) is computed with a window size of 512 samples. After converting the vibration waveforms into 
Log-Mel spectrograms, we then extract four distinct shallow texture features using various local descriptors: 

Labels Condition Bearing code  Damage Method Training samples Test samples

1 H K001 - 272 68

2 IRF KI01 EDM 272 68

3 IRF KI03 EE 272 68

4 IRF KI07 EE 272 68

5 IRF KI04 P 272 68

6 ORF KA01 EDM 272 68

7 ORF KA03 EE 272 68

8 ORF KA05 EE 272 68

9 ORF KA04 P 272 68

10 ORF+IRF KB23 EDM 272 68

Total samples

2720 680

EDM:Electrical Discharge Machining
EE:Electric Engraver
P:Pitting

Table 3.  Description of classes size and labels (PU dataset).

 

Name of Setting Load Torque(Nm) Radial Load (N) Rotational speed (rpm)

N15_M07_F10 0.7 1000 1500

Table 2.  Operating settings.

 

Fig. 12.  Test Rig of PU Dataset.
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LBP, LDP, basic LPQ, and our newly developed descriptor, MBH-LPQ. Additionally, we extracted three deep 
features using CNN models. To ensure a fair comparison among the shallow descriptors, we maintain consistent 
parameters with those used for the proposed MBH-LPQ descriptor. We did not subdivide the images, preprocess 
them, or compute histograms. Instead, we vectorized each component into a single feature vector. For the MBH-
LPQ descriptor, we conducted experiments to optimize its performance by exploring various combinations of 
the three scales generated by basic LPQ, thereby extracting the descriptor across different scales. The window 
size parameter R for basic LPQ was adjusted, selecting values of R from the set {3, 5, 7}. The spectrogram image 
was processed with LPQ and then divided into 10 blocks. The histograms from each block were concatenated 
to form a feature vector, as illustrated in Figure 2. The resulting vectors from the three scales were combined 
to create a feature vector with dimensions of 1 × 2560 for each scale. For the deep features, we utilized three 
pre-trained CNN models: VGG-16, YamNet, and VGGish. Features were extracted from specific layers of each 
model: for VGG-16, from “fc6”, “fc7”, and “fc8”; for YamNet, from “dense”, and for VGGish, from “fc1_1”,“fc1_2”, 
and “fc2”. Regarding the WS fusion method, after numerous experiments and varying the weights from 0.1 to 0.9 
in increments of 0.1, the final weights were set to 0.8 for the VGGish model and 0.2 for the proposed MBH-LPQ 
model to achieve the highest possible classification accuracy.

Results and discussions
The experimental results of our study on the CWRU and PU datasets are detailed in Tables 4 and 5, offering 
a comprehensive analysis of various experiments designed to assess the performance of the proposed 

Features Type Descriptor Scales and Layers Accuracy(%)

Shallow Features

LBP / 77.91

LDP / 76.27

LPQ R=3 79.25

R=5 72.54

R=7 84.48

MBH-LPQ R=3 94.33

R=5 94.93

R=7 97.01

Deep Features

VGG16 fc6 94.48

fc7 91.79

fc8 85.97

YamNet dense 60.00

VGGish fc1_1 99.10

fc1_2 94.63

fc2 63.73

Fusion VGGish+MBH-LPQ fc1_1+(R=7) 100

Table 5.  Results of experiments using shallow features and deep features on the PADERBORN dataset.

 

Features Type Descriptor Scales and Layers Accuracy(%)

Shallow Features

LBP / 92.11

LDP / 87.89

LPQ R=3 84.21

R=5 86.32

R=7 87.37

MBH-LPQ R=3 94.21

R=5 97.37

R=7 97.89

Deep Features

VGG16 fc6 96.84

fc7 90.53

fc8 72.63

YamNet dense 71.58

VGGish fc1_1 98.42

fc1_2 92.11

fc2 71.05

Fusion VGGish+MBH-LPQ fc1_1+(R=7) 98.95

Table 4.  Results of experiments using shallow features and deep features on the CWRU dataset.
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VGGish+MBH-LPQ method. They summarize the performance of the diagnosis models using traditional 
shallow descriptors such as LBP, LDP, and basic LPQ. Notably, these tables include the basic LPQ descriptor 
results at different scales (3, 5, and 7). To enable a direct performance comparison, we also introduce the 
proposed MBH-LPQ descriptor, evaluated at the same scales as basic LPQ. Further, we assess the performance 
of deep features extracted from various CNN models, including VGG-16, VGGish, and YamNet, with accuracy 
metrics reported for different output layers to evaluate their individual contributions. The tables also report the 
percentage of accuracy obtained by fusing the scores of the best accuracy obtained by the shallow description 
(MBH-LPQ) with the top CNN model result (VGGish), using weighted sum (WS) fusion.

Table 6 presents the accuracy achieved by the proposed MBH-LPQ descriptor, with the number of sub-
blocks ranging from 1 to 12. This parameter was varied across both datasets to identify the optimal number of 
sub-blocks, with the results clearly illustrating the impact of image subdivision and histogram extraction on 
classification accuracy. Table 7 lists the different combination ratios of the weighted sum fusion of the proposed 
MBH-LPQ descriptor and VGGish method.

Selecting the number of sub-blocks
Table 6 demonstrates the impact of varying the number of sub-blocks on the performance of our system using 
the proposed MBH LPQ descriptor. In this study, the selection of the number of sub-blocks, denoted as ’b’ 
was determined through empirical analysis. The value of ’b’ was systematically varied, ranging from 1 to 12 
in increments of 2. The optimal configuration, which delivered the highest performance, consisted of 10 sub-
blocks, achieving accuracy rates of 97.89% and 97.01% for the CWRU and PU datasets, respectively.

Impact of shallow texture descriptors
Shallow descriptors have been widely used across various fields in prior research, particularly for feature extraction 
in image recognition. The effectiveness of these methods can vary depending on the specific application. In this 
study, three distinct descriptors LBP, LDP, and basic LPQ were evaluated for their performance in classifying 
load signals and identifying fault types in rolling bearings. Figure 13 and Tables 4 and 5 detailing the accuracy 
rates obtained from these descriptors. For the CWRU dataset, LBP, LDP, and basic LPQ achieved accuracy 
rates of 92.11%, 87.89%, and 87.37%, respectively. In comparison, the PU dataset yielded average accuracy 
rates of 77.91%, 76.27%, and 84.48%, respectively. Notably, the basic LPQ descriptor demonstrated superior 
performance in the PU dataset, surpassing LBP by 6.57% and LDP by 8.21%. However, in the CWRU dataset, 
LBP outperformed LDP and basic LPQ by 4.22% and 4.74%, respectively. These findings underscore the 
effectiveness of shallow texture descriptors, particularly the LPQ descriptor, in extracting meaningful features 
from spectrogram images for fault diagnosis and classification.

MBH-LPQ VGGish CWRU dataset PU dataset

(WS ratio (%)) (WS ratio (%)) Accuracy (%) Accuracy (%)

10 90 98.01 97.16

20 80 98.16 97.31

30 70 98.34 97.46

40 60 98.34 97.76

50 50 98.45 97.91

60 40 98.77 98.21

70 30 98.95 98.81

80 20 98.95 100

90 10 98.95 99.40

Table 7.  The impact of WS ratio on weighted sum fusion of the proposed MBH-LPQ-VGGish method.

 

Features Number of sub-blocks (b)

CWRU dataset PU dataset

Accuracy (%) Accuracy (%)

MBH-LPQ(R=7)

1 87.37 84.48

2 93.68 90.75

4 87.89 86.57

6 97.37 91.49

8 95.26 89.55

10 97.89 97.01

12 99.47 94.93

Table 6.  The effect of the number of sub-blocks of the proposed MBH-LPQ descriptor.
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Impact of deep learning methods
Deep learning has proven to be an effective approach for extracting and recognizing complex features, 
significantly enhancing fault diagnosis and classification tasks. In this study, we evaluated the performance of 
three pre-trained models YamNet, VGGish, and VGG16 using bearing vibration signals. The results, appear in 
Figure 13 and detailed in Tables 4 and 5, show that the VGG16 model achieved accuracy rates ranging from 
72.63% to 96.84% for the CWRU dataset and from 85.97% to 94.48% for the PU dataset. The VGGish model, pre-
trained on audio data, demonstrated even higher accuracy, with rates of 98.42% and 99.10% for the CWRU and 
PU datasets, respectively. In contrast, the YamNet model exhibited lower performance, with accuracy rates of 
71.58% and 60.00% for the CWRU and PU datasets, respectively. These findings suggest that while the VGGish 
and VGG16 models are highly effective for vibration signal analysis, particularly VGGish for audio-based data, 
the YamNet model may be less suitable for this specific application.

Benefits of MBH-LPQ model features
The MBH-LPQ approach demonstrates a significant improvement in feature discrimination over the basic LPQ 
method and other shallow texture descriptors, as evidenced by its performance on the CWRU and PU datasets 
(see Tables 4 and 5). Specifically, MBH-LPQ increased accuracy by 10.52% on the CWRU dataset (from 87.37% 
to 97.89%) and by 12.53% on the PU dataset (from 84.48% to 97.01%) compared to the basic LPQ method. This 
enhancement is attributed to the method’s effective partitioning of Log Mel-spectrogram images into sub-blocks 
and the subsequent representation of localized regions through histograms. The MBH-LPQ descriptor excels 
in capturing essential texture information, thereby outperforming the basic LPQ method. The main strength of 
MBH-LPQ lies in its ability to deliver substantial accuracy improvements by leveraging detailed localized feature 
extraction.

The power of WS fusion at the score-level stage
We achieved accuracy rates of 97.89% and 97.01% using the proposed shallow MBH-LPQ approach on the 
CWRU and PU datasets, respectively. Additionally, the VGGish model outperformed other deep learning 
models, such as VGG-16 and Yamnet, achieving the highest accuracy rates of 98.42% on the CWRU dataset 
and 99.10% on the PU dataset. To further enhance diagnostic performance, we combined the proposed shallow 
MBH-LPQ approach with the VGGish deep model using a Weighted Sum (WS) fusion method at the score 
level. A series of experiments was conducted to determine the optimal weight ratio for the WS fusion method. 
Specifically, the weights were adjusted within a range of 0.1 to 0.9 in increments of 0.1 for both the VGGish 
model and the MBH-LPQ model. After extensive testing, the final weights were set to 0.8 for the VGGish model 
and 0.2 for the MBH-LPQ model. These selected weights highlight the complementary contributions of both 
models, with the VGGish model providing robust high-level feature representations and the MBH-LPQ model 
contributing critical texture-based information. By leveraging this WS fusion method, the diagnostic accuracy 
was further improved, achieving remarkable rates of 98.95% for the CWRU dataset and a perfect 100% for the 
PU dataset, as depicted in Figure 14 and Table 7. This underscores the effectiveness of combining deep learning 
techniques with texture-based descriptors for classifying different bearing faults.

The confusion matrices of our proposed models for the CWRU dataset are presented in Figure 15 to illustrate 
the prediction results of the methods explored in this study. In the fault classification results using the basic 

Fig. 13.  Classification accuracy of different models.
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Fig. 15.  The Confusion matrices of the test results of CWRU dataset): (a) Basic LPQ , (b) MBH-LPQ ,(c) 
VGGish , (d) Fusion(VGGish + MBH-LPQ ).

 

Fig. 14.  The power of MBH-LPQ and WS fusion on the accuracy level.
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LPQ method, 26.32% of the 0.014 inches Ball Fault are incorrectly identified as 0.021 inches Outer Race Fault. 
Additionally, 52.63% of the 0.021 inches Ball Fault are misclassified as 0.014 inches Ball Fault, and 10.53% 
are misclassified as 0.021 inches Outer Race Fault. For the 0.007-inch Outer Race Fault, 5.26% of the 0.007 
inches Outer Race Fault are incorrectly identified as 0.007 inches Ball Fault, 5.26% and 10.53% were incorrectly 
classified as a 0.014” and 0.021” inches Ball Fault, respectively. 10.53% of the 0.021 inches Outer Race Fault are 
incorrectly identified as a health condition, and 5.26% are misclassified as 0.014 inches Ball Fault. Accordingly, 
the misclassified classes are scattered within the confusion matrix (see Figure 15a). It is clear that the proposed 
new MBH-LPQ descriptor performed effectively, accurately classifying eight classes out of ten, 10.53% of the 
0.021 inches Ball Fault are incorrectly identified as 0.021 inches Outer Race Fault. 5.26% and 5.26% of the 0.007 
inches Outer Race Fault are wrongly predicted as 0.007 and 0.021 inches Ball Fault, respectively. this has led to 
a slight scatter within the confusion matrix (see Figure 15b). In the VGGish deep learning model, 5.26% of the 
0.021 inches Ball Fault are misidentified as 0.007 inches Ball Fault, and 5.26% of the 0.007 inches Outer Race 
Fault are incorrectly identified as 0.007 inches Ball Fault, and 5.26% are incorrectly identified as 0.021 inches 

Dataset Method -6(db) -3(db) 0(db) 3(db) 6(db) None

CWRU

MBH-LPQ 88.42% 92.63% 94.21% 95.26% 95.79% 97.89%

VGGish 91.58% 94.74% 96.32% 96.84% 97.37% 98.42%

VGGish+MBH-LPQ 92.11% 96.32% 96.32% 97.37% 97.89% 98.95%

PU

MBH-LPQ 94.78% 95.52% 96.42% 96.72% 96.87% 97.01%

VGGish 96.12% 96.87% 97.91% 98.36% 98.51% 99.10%

VGGish+MBH-LPQ 99.25% 99.40% 99.70% 99.85% 99.25% 100%

Table 8.  Effects of noise on fault diagnosis accuracy of the proposed methods.

 

Fig. 16.  The Confusion matrices of the test results of (PU dataset ): (a) Basic LPQ , (b) MBH-LPQ ,(c) VGGish 
,(d) Fusion(VGGish + MBH-LPQ).
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Ball Fault and , As observed in the confusion matrix (see Figure 15c), this led to a slight dispersion between 
the two misclassified classes. However, Our proposed fusion approach VGGish +MBH-LPQ obtains near-fault-
free confusion matrix (see Figure 15d). Only 5.26% of the 0.007 inches Outer Race Fault are misidentified as 
0.007 inches Ball Fault, and 5.26% were incorrectly identified as 0.021-inch ball fault. For the second dataset 
(PU), as shown in Figure 16, the confusion matrix were used to illustrate the prediction results of the methods 
based on our study. Where we can see the faults classification of the basic LPQ method is mainly that 2.99% 
of the Healthy state (H-K001) are incorrectly identified as Inner Race Fault (IRF-KI01). 2.99% of the Inner 
Race Fault (IRF-KI01) are incorrectly identified as Healthy state (H-K001). 59.7% of the Inner Race Fault (IRF-
KI03) are incorrectly identified as Outer Race Fault (ORF-KA03). 41.79% of the Inner Race Fault (IRF-KI07) are 
incorrectly identified as Inner Race Fault (IRF-KI04). 4.48% of the Inner Race Fault (IRF-KI04) are incorrectly 
identified as Inner Race Fault (IRF-KI01), and 2.99% are incorrectly identified as Inner Race Fault (IRF-KI07). 
1.49% of the Outer Race Fault (ORF-KA03) are incorrectly identified as Inner Race Fault (IRF-KI03). 1.49% of 
the Outer Race Fault (ORF-KA05) are incorrectly identified as Inner Race Fault (IRF-KI03), and 34.33% are 
incorrectly identified as Inner Race Fault (IRF-KI07), and 2.98% are incorrectly identified as Inner Race Fault 
(IRF-KI04). Accordingly, we observe a dispersion of misclassified classes within the confusion matrix (See Figure 
16a). While the classification of bearing faults using the proposed new texture descriptor MBH-LPQ performed 
well compared to the basic LPQ model, accurately classifying seven classes compared to only three classes for the 
basic LPQ model, according to the confusion matrix (see Figure 16b), we observe that 22.39% of the Inner Race 
Fault (IRF-KI07) are incorrectly identified as Inner Race Fault (IRF-KI04). 2.99% of the Inner Race Fault (IRF-
KI04) are incorrectly identified as Inner Race Fault (IRF-KI07). 1.49% of the Outer Race Fault (ORF-KA05) are 
incorrectly identified as Inner Race Fault (IRF-KI07), and 2.99% are incorrectly identified as Inner Race Fault 
(IRF-KI04). The misclassification of the VGGish deep learning model is essentially that 1.49% of the Inner Race 
Fault (IRF-KI07) are incorrectly identified as Outer Race Fault (ORF-KA05), and just 1.49% of the Inner Race 
Fault (IRF-KI04) are incorrectly identified as Inner Race Fault (IRF-KI07), and 2.99% are incorrectly identified 
as Outer Race Fault (ORF-KA05). 2.99% of the Outer Race Fault (ORF-KA05) are incorrectly identified as Inner 
Race Fault (IRF-KI07). Accordingly, we see through the confusion matrix (see Figure 16c) a slight dispersion of 
the two incorrectly identified classes. Our proposed fusion approach VGGish + MBH-LPQ using the PU dataset 
obtained a completely fault-free confusion matrix (see Figure 16d) where we observe 100% correct identification 
of the ten different classes and hence we observe completely defined fault classes.

Experimental results under noisy conditions
To further evaluate the the performance of the proposed diagnosis models,and extra Gaussian white noises with 
varying signal-to-noise ratios (SNRs) of -6 dB, -3 dB, 0 dB,, 3 dB, and 6 dB are added to the original vibration 
signal. The SNR is mathematically defined by the following formula:

	
SNR( db) = 10 · log

(
PS

PN

)
� (21)

Where, PS  represents the power of the signal, while PN  denotes the power of the noise. A higher SNR value 
indicates superior signal quality, signifying reduced interference from noise and a clearer representation of the 
signal. The CWRU and PU datasets are contaminated by different noise levels to assess the reliability of the 
proposed method in classifying various motor bearing faults under such circumstances. The specified noise 
levels serve to validate the accuracy of the proposed approach in comparison to other existing methods for 
motor bearing fault classification. The performance evaluation and comparison of the proposed models are 
shown in Table ref. In general, the accuracy of the proposed models MBH-LPQ, VGGish, and VGGish+MBH-
LPQ decreased as the S/P ratio increased to -6 dB. Conversely, as the S/P ratio increased above the S/P ratio 
and approached 6 dB, the model accuracy tended to increase. In conclusion, the bearing data containing noise 
can interfere with the diagnosis of various bearing faults. However, by comparing with the noiseless MBH-
LPQ, VGGish, and VGGish+MBH-LPQ models, it is worth noting that our proposed approach VGGish+MBH-
LPQ consistently achieved diagnostic accuracy above 92.11% in all SNR conditions for the CWRU dataset, 
while for the PU dataset, a high diagnostic accuracy of above 99.25% was achieved, demonstrating unparalleled 
robustness and noise resistance, both in low SNR environments with strong noise and high SNR scenarios. This 
noise-based test is specifically designed to evaluate the robustness of the ability of the proposed diagnosis model 
to maintain performance despite the presence of noise rather than to assess its generalization capability.

Comparison to existing methods
To demonstrate the efficiency of our proposed approaches, Table 9 showcases a thorough evaluation showcasing 
the performance of our proposed models MBH-LPQ, VGGish, and VGGish + MBH-LPQ in comparison with 
the latest state-of-the-art diagnostic techniques. The comparison table presents a set of proposed models, 
including MBH-LPQ, VGGish, and VGGish + MBH-LPQ, each designed with the ability to handle 10 classes. 
These models were trained and tested on the CWRU and PU datasets, and their accuracy ranged from 97.89% 
for MBH-LPQ and 98.42% for VGGish on the CWRU dataset to 97.01% for MBH-LPQ and 99.10% for VGGish 
on the PU dataset. In contrast, the state-of-the-art methods mentioned in the table use diverse models and 
CWRU or PU dataset.

For CWRU dataset, Niyongabo et al.71 uses a fine-tuned DenseNet-121 with 10 classes, achieving an average 
accuracy 98.57%. Makrouf et al.72 uses a Stacking Classifier for 10 classes, achieving a higher accuracy of 97.2%. 
Li et al.73 presents a TDANET with 10 classes, achieving 97.69% average accuracy. Wang42 presents three models 
with 10 classes, achieving 88.7% accuracy for SMA-VMD-CNN, 90.3% and for SMA-VMD-LSTM and 94.6% 
for SMA-VMD-CNN-LSTM. Finally, our proposed methods use 10 classes, where MBH-LPQ achieved 97.89% 
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accuracy and VGGish achieved 98.42% accuracy. Also, the VGGish + MBH-LPQ fusion approche through 
weighted sum (WS) achieved an excellent diagnosis accuracy of 98.95% for the CWRU datast.

While for the second PU dataset, Toma and Kim44, used discrete wavelet transform (DWT) and machine 
learning techniques to extract features. Using the extracted feature set, the three bearing fault conditions were 
classified using an extreme gradient boosting (XGBoost) classifier, showing an accuracy of 99.3%. Kaige et al.74, 
proposed an approach that takes into account differences in work environment conditions and contaminated 
data based on a hierarchical branch convolutional neural network (HB-CNN) scheme, achieving classification 
accuracy of 99.92% for 3 classes and 99.86% for 5 classes. Tianyu et al.75, proposed a multi-source domain 
information fusion network (MDIFN), and under variable operating conditions, achieved an average accuracy 
of 95.97%. Qi et al.76, proposed three models: 2DCNN, 2DCNN + DCGAN, and TF-DLGAN, where the 2DCNN 
model achieved an average accuracy of 97%, the 2DCNN + DCGAN model achieved an average accuracy of 
98.5%, while the TF-DLGAN model based on a deep convolutional generative adversarial network achieved 
the highest average accuracy of 99.25%.Finally, our results showed that we achieved 97.01% accuracy for the 
proposed shallow model MBH-LPQ and the VGGish model achieved an accuracy of 99.10%. We also achieved 
an excellent diagnosis accuracy of 100% through the VGGish + MBH-LPQ fusion approach.

Based on these comparisons, it is evident that our proposed models effectively extracted critical bearing 
features, delivering high diagnostic accuracy across both the CWRU and PU datasets. Furthermore, the fusion 
approach demonstrated exceptional diagnostic accuracy, confirming the superior performance of our models 
compared to other methods.

Dataset Methods  Time (s)

CWRU

MBH-LPQ(Our) 0.224

VGGish(Our) 1.769

VGGish+MBH-LPQ(Our) 1.998

OCSSA-VMD-CNN-BiLSTM43 8.47

DTL-Res2Net-CBAM77 372

PSO-tuned XGBoost78 127.212

CBAM-MFFCNN79 0.1179

PU

MBH-LPQ(Our) 0.134

VGGish(Our) 1.654

VGGish+MBH-LPQ(Our) 1.795

Table 10.  The computation time (s) of the proposed methods using the two datasets.

 

Dataset Number of classes Author Year Method Accuracy(%)

CWRU 10

Niyongabo et al.71 2022 fine-tuned DenseNet-12 98.57

Makrouf et al.72 2023 Stacking Classifier 97.2

Li et al.73 2024 TDANET 97.69

Wang and Nan42 2024 SMA-VMD-CNN 88.7

SMA-VMD-LSTM 90.3

SMA-VMD-CNN-LSTM 94.6

Proposed 2024 MBH-LPQ 97.89

VGGish 98.42

VGGish+MBH-LPQ 98.95

PU

3 Toma and Kim.44 2020 DWT + XGBoost 99.3

3 Kaige et al.74 2021 HB-CNN 99.92

5 99.86

13 Tianyu et al.75 2024 MDIFN 95.97

10 Qi et al.76 2024 2DCNN 97

2DCNN + DCGAN 98.5

TF-DLGAN 99.25

Proposed 2024 MBH-LPQ 97.01

VGGish 99.10

VGGish+MBH-LPQ 100

Table 9.  Comparison of classification accuracy across with the state-of-the-art models.

 

Scientific Reports |         (2025) 15:9270 20| https://doi.org/10.1038/s41598-025-93133-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Time Complexity Evaluation
To assess the computational complexity of the proposed method, we measured the CPU time required to execute 
the algorithm. The experiments were conducted on a system equipped with an Intel(R) Core(TM) i5-8365U CPU 
(1.60 GHz - 1.90 GHz) and 16 GB of RAM, using MATLAB R2021a. Table 10 presents the CPU execution time 
(in seconds) of our algorithm across two evaluation datasets. The computation time of our approach, utilizing 
VGGish+MBH-LPQ features, is approximately 1.998 seconds for the CWRU dataset and 1.795 seconds for the 
PU dataset. These results highlight that the required verification time is minimal, demonstrating the feasibility 
and effectiveness of our approach for real-time bearing fault diagnosis applications.

Conclusion and future works
Shallow recognition techniques can effectively extract valuable information from Log Mel-Spectrogram images 
related to bearings faults features. In this paper, we proposed a novel approach that incorporates two distinct 
approaches: the deep learning model VGGish and the newly proposed shallow technique called MBH-LPQ. 
This incorporation aims to minimize information loss during features extraction and enhance the accuracy of 
fault diagnosis. The objective of this study extends beyond achieving high classification accuracy, it also includes 
comprehensive comparison of different texture descriptors as well as the impact of deep learning models 
pre-trained on voice recognition and those pre-trained on image recognition. This comparison is crucial in 
demonstrating the impact of these models on the diagnostic accuracy of different bearing faults.

The proposed approach effectively performs detection and classification of bearing faults across two distinct 
datasets. Various shallow and deep recognition techniques were used, and experimental results obtained indicate 
the effectiveness of the proposed diagnostic models in distinguishing between different bearing fault features 
and their superiority over existing established approaches. Additionally, combining texture descriptor shallow 
techniques with deep learning algorithms shows promise in enhancing the accuracy of fault classification across 
different bearings. The time-frequency domain based feature selection and extraction proved to be highly 
efficient, yielding very high accuracy. The Log Mel-Spectrogram extracted from the raw audio signal were 
particularly useful for differentiating between various bearing faults.

Our future research focus on the optimization of the proposed methodology for bearings fault diagnosis 
and testing it on broader datasets under different load and operating conditions and under different data 
split strategies to assess the impact of training size on fault diagnosis performance to ensure its effectiveness 
while reducing computational load to demonstrate generalizability. Additionally, we will explore the potential 
applicability of this approach in diverse fields beyond bearing fault diagnosis.

Data availability
The datasets CWRU and PU analysed during the current study are available at: ​”​h​t​t​p​s​​:​/​/​e​n​g​​i​n​e​e​r​i​​n​g​.​c​a​s​​e​.​e​d​u​/​b​e​
a​r​i​n​g​d​a​t​a​c​e​n​t​e​r​/​d​o​w​n​l​o​a​d​-​d​a​t​a​-​f​i​l​e​” and ”https://mb.uni-paderborn.de/kat/datacenter”, respectively.
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