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Hybrid deep learning CNN-LSTM
model for forecasting direct
normal irradiance: a study on solar
potential in Ghardaia, Algeria
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This paper provides an in-depth analysis and performance evaluation of four Solar Radiance (SR)
prediction models. The prediction is ensured for a period ranging from a few hours to several days of
the year. These models are derived from four machine learning methods, namely the Feed-forward
Back Propagation (FFBP) method, Convolutional Feed-forward Back Propagation (CFBP) method,
Support Vector Regression (SVR), and the hybrid deep learning (DL) method, which combines
Convolutional Neural Networks and Long Short-Term Memory networks. This combination results in
the CNN-LSTM model. Additionally, statistical indicators use Mean Squared Error (MSE), Root Mean
Squared Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and
Normalized Root Mean Squared Error (nRMSE). Each indicator compares the predicted output by each
model above and the actual output, pre-recorded in the experimental trial. The experimental results
consistently show the power of the CNN-LSTM model compared to the remaining models in terms of
accuracy and reliability. This is due to its lower error rate and higher detection coefficient (R?=0.99925).

Keywo rds Artificial neural networks, Convolutional neural network, Convolutional feed-forward back
propagation, Deep learning, Feed-forward back propagation, Long short-term memory, Solar radiance
forecasting

In recent years, advancements in renewable energy technologies have gained global importance due to the
increasing demand for sustainable and environmentally friendly energy solutions. Solar energy, as an abundant
and clean resource, has attracted significant research attention, particularly in optimizing its production and
integration into power grids. However, the efficiency of solar energy systems depends on the accurate forecasting
of Direct Normal Irradiance (DNI), which is essential for planning energy generation, optimizing photovoltaic
(PV) and concentrated solar power (CSP) systems, and ensuring grid stability. Accurate DNI prediction enables
better energy management, reduces operational costs, and supports large-scale adoption of solar power!'~. Solar
radiation forecasting is inherently complex due to its dependence on various meteorological factors such as
cloud cover, atmospheric aerosols, temperature variations, and humidity levels. These factors exhibit nonlinear
and dynamic behaviors, making it difficult for traditional forecasting methods to provide precise and reliable
predictions. Conventional approaches, including Numerical Weather Prediction (NWP) models, statistical
regression techniques, and empirical models, often fail to capture the intricate relationships between these
meteorological variables. NWP models rely on physics-based simulations, which require high computational
power, while statistical models assume linear dependencies, limiting their accuracy in highly variable weather
conditions. In most cases, conventional statistical approaches, such as Linear Regression (LR), are inadequate
for predicting solar radiation, necessitating more advanced methodologies*. This paper emphasizes the
importance of accurate solar radiation (SR) forecasting, as it is essential for the effective development of
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renewable energy technologies. The city of Ghardaia, Algeria, has been chosen as the research focus due to
its high solar potential and suitability for future solar energy projects. Through studies on SR forecasting, this
research aims to extend predictive capabilities to other variables related to renewable energy generation. Several
forecasting methods exist for solar radiation, each suited to different timescales. Long-term forecasts often
rely on statistical and physical models, while short-term and very short-term forecasts require more advanced
computational techniques”®. Ghardaia’s unique climate, characterized by high variability in cloud conditions,
necessitates specialized forecasting models, which are a key focus of this study. Additionally, the high demand
for solar energy in Algeria’s desert regions requires precise predictions, making microclimatic-level modeling
using numerical meteorological data essential®.

To address these limitations, Artificial Intelligence (AI) and Deep Learning (DL) techniques have emerged
as powerful tools for solar irradiance forecasting. Unlike traditional models, deep learning approaches can
automatically learn complex patterns from large datasets, enabling improved predictive accuracy. Among the
various deep learning architectures, hybrid models combining Convolutional Neural Networks (CNNs) and
Long Short-Term Memory (LSTM) networks have shown superior performance in time-series forecasting
tasks. CNNs specialize in spatial feature extraction, identifying patterns in meteorological inputs such as cloud
movement, temperature fluctuations, and pressure variations. Meanwhile, LSTMs are designed to process
sequential data, capturing long-term dependencies and trends in solar irradiance fluctuations. By integrating
CNNs and LSTMs into a single hybrid framework, forecasting models can effectively analyze both spatial
and temporal dependencies, resulting in more accurate DNI predictions!®-!3. Recent studies in renewable
energy systems, such as microbial electrosynthesis'* and biohydrogen production'®, have demonstrated the
transformative potential of hybrid architectures and adaptive optimization. These advancements underscore
the need for similarly innovative approaches in solar forecasting, particularly in regions like Ghardaia with high
climatic variability.

We focus on the integration of advanced neural networks and hybrid deep learning (DL) techniques.
Below are the key highlights of our study, showcasing significant advancements in Al-based approaches while
addressing the limitations of conventional forecasting models:

1 Advanced Al Techniques Integration: The research utilizes a combination of conventional Artificial Neural
Networks (ANNs) and DL methods, specifically CNN-LSTM models, to improve solar radiation forecasting
by effectively handling complex meteorological data.

2. Focus on Ghardaia, Algeria: Centered in Ghardaia, a region with significant solar potential, the study tailors
its findings to local climatic conditions marked by variable cloud cover and atmospheric factors.

3. Hybrid CNN-LSTM Model: By combining CNNs for spatial feature extraction and LSTMs for capturing
temporal dependencies, the hybrid model effectively addresses the nonlinear nature of SR data.

4. Evaluation of ANN Architectures: The study compares various ANN architectures, including Feed-Forward
Back Propagation (FFBP), Convolutional FFBP (CFBP), Support Vector Regression (SVR), and the hybrid
CNN-LSTM approach, using advanced training algorithms to identify the most effective techniques for solar
radiation forecasting.

5. Acknowledgement of Limitations and Contributions: While demonstrating the advantages of Al-driven ap-
proaches, the research acknowledges challenges such as data scarcity and model complexity, emphasizing
the importance of optimizing input parameters for accurate solar predictions and contributing to renewable
energy management.

This study focuses on developing a hybrid CNN-LSTM-based DNI forecasting framework and applying it to the
Ghardaia region in Algeria, known for its high solar potential and climate variability. The region experiences
significant variations in temperature, humidity, wind speed, and dust storms, all of which impact solar irradiance
levels. A reliable forecasting model tailored to these conditions is crucial for optimizing solar energy production
and supporting Algeria’s renewable energy initiatives.

The dataset used in this study is sourced from NASA’s Prediction of Worldwide Energy Resources (POWER)
project, covering the period from 2017 to 2023, and consists of 2575 daily observations. The key meteorological
parameters include DNI, maximum and minimum temperature, wind speed, specific humidity, and surface
pressure. These variables play a critical role in training deep learning models to capture variations in solar
radiation and improve forecasting accuracy.

To evaluate the performance of the proposed CNN-LSTM model, its predictions are compared against
conventional forecasting techniques, including Feed-Forward Back Propagation (FFBP), Convolutional FFBP
(CFBP), and Support Vector Regression (SVR). The models are assessed using multiple statistical performance
metrics, including Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE),
Mean Absolute Percentage Error (MAPE), Normalized Root Mean Squared Error (nRMSE), and the coefficient
of determination (R?).

The results demonstrate that the CNN-LSTM model significantly outperforms traditional approaches,
achieving lower forecasting errors and higher accuracy, making it a promising solution for real-world solar energy
management. Beyond its technical contributions, this study highlights practical applications in optimizing solar
power plant operations, improving energy grid stability, and supporting long-term renewable energy policies.

The structure of the paper is section “Related works” reviews related work on Al-based solar irradiance
forecasting. Section “Materials and methods” describes the methodology, including dataset preparation,
preprocessing, and model architecture. Section “Results and discussions” presents experimental results and
comparative performance analysis. Finally, Section “Conclusion” concludes the study and discusses potential
future research directions.
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Related works

In recent years, researchers have shown considerable interest in SR forecasting, dedicating numerous studies
to this field. SR is influenced by geographic characteristics of the Earth’s surface and surrounding weather
conditions. Unfortunately, it is subjected to uncontrollable changes, such as seasonal and diurnal variations, city
locations, and cloud abundance. Consequently, accurate estimation of SRon Earth is crucial for maximizing solar
operations. SR forecasting is crucial in renewable energy systems. Accurate predictions can minimize energy
costs and optimize energy production, enabling plants to contribute effectively to energy supply chains, and
supporting commerce, industry, and transportation services consistently. Various types of forecasting problems,
such as electricload, wind, and solar power requests, have been a focus for decades. Today, solar power is essential
and increasingly contributes to the electricity mix, becoming competitive with conventional sources. Regardless
of the specific applications, solar power forecasting involves system-referenced interfaces encompassing
inputs as controllable factors and the proposed output results. Paper!'® provides an overview of advancements
in forecasting methods for wind and solar energy, highlighting improvements in forecast skill, the impact of
blockchain technology on data transactions, evolving business models in the renewable sector, and challenges
posed by integrating high levels of renewable energy into power systems. The authors in the paper!” explore
various methodologies for energy prediction and management in the context of renewable energy and electricity
consumption forecasting. Article!® presents a comprehensive review of solar irradiance resources and forecasting
techniques, focusing on using sensor networks for accurate solar power generation predictions. The authors in
the paper!? investigate various methods of wind power forecasting, focusing on their analysis, prediction time
scales, error measurements, and accuracy improvements to enhance the efficiency of wind energy systems. ANNs
have been predominantly used in SR estimation. SR patterns undergo dynamic spatial variation in any region
where geographic and weather conditions are not constant over time. Consequently, ANNs emerge as a flexible
transfer function, making excellent forecasts of solar data patterns. Numerous studies have used ANNs for SR
forecasting in various areas, showcasing the potential of this approach. The generalization capabilities of ANNs
were highlighted by authors in?°, demonstrating their strength in handling noisy and incomplete real-world data.
This capability is crucial in modeling solar radiation, as it involves intricate and variable datasets. The review
of 54 papers by Eisa underscores the importance of selecting performance criteria and network architecture
as foundational steps toward successful forecasting in diverse contexts. Based on this foundation, Voyant et
al.?! investigate the predictability of solar irradiation, particularly for insular locations without weather stations.
This paper presents innovative work using physical phenomena to improve ANN predictions by addressing
challenges posed by non-stationarity in solar data. By incorporating extraterrestrial irradiation coefficients, they
successfully improve prediction quality, showcasing ANNs’ adaptability in unique environmental conditions.
In the paper??, the authors advance the discourse by introducing radial basis function networks for estimating
SRin areas without direct measurements. Their approach includes univariate and multivariate forecasting
techniques, highlighting the versatility of ANNs in different climatic contexts. The authors demonstrate that
ANNS can effectively model solar radiation, emphasizing the need for selecting appropriate input parameters
to optimize performance. Hoyos-Gémez et al., in a paper?, address the increasing demand for accurate solar
irradiance forecasting due to the proliferation of solar power generation systems. They highlight the robustness
of ANNG, fuzzy logic, and hybrid models in capturing systematic errors, reinforcing ANNS’ status as a leading
technique in solar irradiance modeling. Their review of existing studies indicates a significant gap in research
focused on tropical environments, signaling an area for future exploration. Bou Nassif et al. review various
methodologies combining ANN with statistical techniques for short-term load forecasting. They note that
integrating additional input parameters can enhance ANN accuracy, further supporting the notion that ANNs
can be effectively tailored to specific forecasting challenges?*. Recent advancements are reflected in*, which
focuses on the critical role of short-term PV forecasts in energy dispatch decisions. Their study illustrates the
evolution of prediction methods, emphasizing the necessity of incorporating a broader range of meteorological
features alongside traditional solar irradiance data. This approach aligns with the trend of enhancing ANN
models to improve forecasting precision. Nawaeb et al., in?®, provide a comparative review of empirical and
Al-based approaches to solar irradiation forecasting, stressing that ANNs are widely used across different
geographical settings. Region-specific studies have also gained prominence. For instance, Benali et al.”” applied
a hybrid CNN-LSTM model to North African solar datasets, emphasizing the importance of localized feature
engineering for arid climates. Their findings validate our methodology of integrating NASA POWER data with
lagged SR measurements for Ghardaia. Additionally, Chen et al. in?® explored the fusion of satellite-derived
cloud dynamics with ground-based sensors using CNN-LSTM and achieved sub-hourly irradiance predictions,
complementing our use of NASAs CERES/MERRA2 dataset. Their results indicate that although empirical
methods remain relevant, the trend shows a tendency toward Al models more accurately, ANNs when accuracy in
predictions is required. Finally, innovative ML techniques in?® are applied to solar energy estimation, notably the
source-free domain adaptation approach. Their work highlights the potential of advanced ANN configurations,
such as LSTM networks, to adapt dynamically to changing environmental conditions, thereby improving
predictive performance across different regions. Recent comparative studies, such as Wang & Li*, have shown
that hybrid CNN-LSTM models outperform transformer-based architectures for short-term forecasts due to
their localized spatial feature extraction capabilities. This aligns with our model’s design, which prioritizes short-
term accuracy for energy dispatch planning. Furthermore, ethical considerations in renewable energy Al are
increasingly addressed through explainability frameworks. For example, Ibrahim et al. in®! integrated SHAP
(SHapley Additive exPlanations) into solar forecasting models to interpret feature contributions, highlighting a
direction we recognize as crucial for future work. Recent advancements in hybrid models have further improved
solar irradiance forecasting. Zhang et al. in®? proposed a spatio-temporal transformer combined with LSTM,
achieving state-of-the-art accuracy in arid regions like Ghardaia. Similarly, Kumar et al. in** demonstrated that
attention-augmented CNN-LSTM architectures significantly improve forecasting robustness for non-stationary
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Category Details

Source NASA POWER (CERES/MERRA2)
Location Latitude: 32.4466° N, Longitude: 3.6992° E
Elevation 522.19m

Time Period | January 1, 2017-December 31, 2023

Resolution 0.5°x0.625° latitude/longitude

Table 1. Dataset overview and metadata.

Variable Description

ALLSKY_SFC_SW_DWN | All sky surface shortwave downward irradiance (kW-hr/m?/day)
WS2M WS at 2 m above ground level (m/s)

T2M_MAX Maximum temperature at 2 m above ground level (°C)
T2M_MIN Minimum temperature at 2 m above ground level (°C)

QV2M Specific humidity at 2 m above ground level (g/kg)

PS Surface pressure (kPa)

Table 2. Parameters and descriptions.

solar data. These studies highlight the growing emphasis on hybrid architectures for capturing both spatial and
temporal dependencies, a critical requirement for regions with high climatic variability.

In this study, we will present a comparative analysis of a CNN-LSTM model against several traditional
forecasting methods, including SVR and multiple configurations of Feed Forward and Convolutional Feed-
forward ANNSs. The performance of each model will evaluate using key metrics: MSE, RMSE, MAE, MAPE,
nRMSE, and the coefficient of determination (R?).

Materials and methods

This section outlines the methodology employed in this study, including dataset acquisition, preprocessing
techniques, model architecture, and performance evaluation. We focus on the integration of advanced deep
learning techniques, particularly CNN-LSTM models, to enhance solar radiation forecasting by leveraging both
spatial feature extraction and temporal sequence learning.

Dataset collection

The dataset used in this study is sourced from NASA’s Prediction of Worldwide Energy Resources (POWER)
project, covering the period from 2017 to 2023. The study focuses on Ghardaia, Algeria (Table 1), an area with
high solar potential and significant climatic variability, making it ideal for evaluating deep learning-based solar
forecasting models. The dataset consists of 2575 daily observations of meteorological parameters critical for
solar irradiance forecasting (Table 2).

Data preprocessing

Data preprocessing is essential to ensure the quality and consistency of inputs for deep learning models. In this
study, missing values are handled using linear interpolation to maintain data continuity, while all features are
normalized to the [0,1] range using Min-Max normalization to enhance convergence during training. Feature
engineering involves introducing temporal lag variables to help LSTMs capture time-dependent patterns and
conducting correlation analysis to select the most relevant meteorological features. The dataset is then split into
85% training and 15% testing data to evaluate model performance on unseen observations. Finally, the data
is formatted into 3D input sequences, making it suitable for CNN-LSTM models by incorporating multiple
timesteps to capture sequential dependencies effectively. The different ML and DL models used for solar
irradiance forecasting are represented in Fig. 1.

The CNN design model

The CNN is employed to extract spatial features from meteorological data, such as temperature, humidity, and
cloud cover, which are critical for understanding local weather patterns. For example, convolutional layers can
identify regions of high cloud coverage that may reduce solar irradiance. The dataset, which includes climatic
variables measured at 10-min intervals, is well-suited for CNN processing due to its multidimensional structure
and large scale?®**-38 This allows the model to capture complex spatial patterns that influence solar irradiance.
The architecture of CNNs typically consists of multiple layers, including convolutional layers with local receptive
fields. These layers allow the model to apply convolution matrices to specific segments of the input data,
mathematically represented as follows:

(fxw) (i, 4) =Y > f(mn).w(i—m,j—n) )
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First method Second method

Hybrid Model Time Series Models

Non-Linear Models

- Proposed model
(CNN-LSTM)

- SVR

- ANN-Feed Forward

- ANN- Convolutional
Feed-forward

SR forecasting models

Fig. 1. Different models for solar irradiance forecasting.

This feature extraction process not only reduces the size but also enhances the model’s resilience by maintaining
invariant properties. The activation function, usually of the Rectified Linear Unit (ReLU) type, is applied post-
convolution and is expressed as follows:

a (z) = max (0, ) (2
Additionally, max pooling is employed to down sample the feature maps, which can be represented as:

p(i,j) = max fli+tm,j+n) 3)

m,n€poolingregion

Ultimately, the output of the fully connected layer is computed using the equation:

y=Wa+b (4)

Such robustness is critical in this study, especially when considering the minimal spatial invariance of cloud
patterns that influence solar irradiance. In designing the solar radiance model, the first two layers function as
convolutional layers, where they capture essential features from the input data. Following these are the flatten
layer, which converts the multidimensional outputs of the convolutional layers into a one-dimensional vector,
allowing for seamless integration with the LSTM layers.

The LSTM networks

The LSTM networks were first proposed in 1997 as a specific type of Recurrent Neural Networks (RNNs)
designed explicitly to overcome the long-term dependency problem that architectures more general than
RNNs usually suffer from. We utilize, in this study, LSTM networks in effectively forecasting direct normal
irradiance by harnessing the strengths that come with LSTM in dealing with time-series data. The architecture
of LSTM networks involves several types of gates, which control the flow of input data while training. This gating
mechanism is relevant in our context because it allows the model to forget or remember information selectively;
this is important to prevent the vanishing gradient often found in long sequences. This capability can empower
LSTMs in transferring relevant information through the forecasting process, ensuring that important temporal
patterns in solar irradiance data are recognized and utilized. The LSTM model utilizes three main gates to
control information flow: the input gate, forget gate, and output gate. These gates are represented mathematically
to decide what information should be added to or removed from the cell state. In Fig. 2 illustrate the internal
structure of the LSTM cell is shown, which is used as a basic component for processing sequences in time-series
data.

The input gate controls how much new information is added to the cell state and defined as:

ie =0 (Wi [he—1, 2] + bi) (5)

where ; represents the input gate, W; the weight matrix, h;—1 the previous hidden state, x; the current input,
and b; the bias. The forget gate determines how much of the past information is retained and is given by:

Jt =0 Wy [he—1, ] + by) (6)

where f; is the forget gate, W the weight matrix, and by the bias term. The cell state update equation, which
integrates both the forget and input gates, is expressed as:

Cy = ft * Ci_1 + 7+ * tanh (WC. [ht,h:ct] —+ bc) (7)
where C} is the cell state at time ¢, C;—1 is the previous cell state, and W, the weight matrix associated with

the cell state update. Finally, the output gate determines the next hidden state that is passed forward and is
represented as:

ot = 0O (Wo. [ht_l,l’t] + bo) (8)
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Soﬁinax LSTM

Fig. 2. The internal structure of the LSTM cell.

ht = Ot * tanh Ct (9)

where h; is the new hidden state, influenced by the output of the cell state C'y, and o; is the output gate. By
integrating LSTMs into our hybrid CNN-LSTM model, we aim to enhance the model’s ability to capture intricate
temporal patterns in solar irradiance, thereby contributing to more accurate solar energy forecasting in the
region of Ghardaia, Algeria.

The framework of the hybrid CNN-LSTM

The proposed CNN-LSTM hybrid model is designed for short-term forecasting of Direct Normal Irradiance
(DNI) using meteorological data from Ghardaia, Algeria. This framework combines the spatial feature
extraction capability of CNNs with the temporal sequence learning of LSTMs, ensuring improved forecasting
accuracy. CNNs identify spatial dependencies by applying convolutional filters to meteorological variables such
as temperature variations, cloud coverage, and humidity distributions, which significantly influence DNI. By
utilizing localized feature extraction, CNNs detect patterns such as temperature gradients preceding an increase
in DNT or cloud formations reducing solar radiation, while also reducing data dimensionality and minimizing
noise. The extracted spatial features are then passed to the LSTM component, which is optimized for learning
long-term dependencies in solar irradiance fluctuations. LSTMs utilize memory cells and gating mechanisms to
selectively retain relevant past information while discarding insignificant variations, addressing the vanishing
gradient problem often encountered in deep sequence models. This allows the LSTM to recognize key temporal
trends, including seasonal changes in solar radiation, daily DNI fluctuations due to sunrise and sunset, and
short-term variations caused by atmospheric disturbances. The CNN-LSTM framework is trained on historical
datasets, with hyperparameters optimized to minimize forecasting errors. The final model outputs precise DNI
predictions, enhancing solar resource management and energy planning in arid and semi-arid regions. The
design of this hybrid framework aligns with recent advancements in system optimization for renewable energy.
For example,'® demonstrated how self-regulation and flow rate optimization enhance biohydrogen production,
underscoring the value of adaptive architectures like CNN-LSTM for handling dynamic solar data. Similarly,>+*
emphasized the role of energy transfer mechanisms in microbial systems, which inspired our approach to
capturing temporal dependencies in irradiance data. The algorithm 1 describes a CNN-LSTM model designed
to forecast DNI for very short-term solar irradiance prediction.

The SVR model designing

The SVR model is an effective and powerful ML technique based on the statistical learning theory introduced as
a nonlinear development of support vector machines. SVM is one of the most used and effective classification
and regression algorithms that perform the classification and/or regression tasks based on the principles of
dimensions. It separates the two classes, or predicts numerical values, by finding the widest margin between the
observations, reducing the penalty of violating the margin, and ensuring that the forecast error does not exceed
an error tolerance. SVR is a non-probabilistic model, and it is included in the so-called “kernel method,” which
operates directly with the input vectors in a high-dimensional implicit feature space, as a function of the distance

Scientific Reports |

(2025) 15:15404 | https://doi.org/10.1038/s41598-025-94239-z nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

Inputs:
. Put {(X1,Y1),(X2,Y2),...(Xn,Yn)} as training dataset, where X; are meteorological feature vectors and Y are the
corresponding direct normal irradiance (DNI) values.
Model Parameters: Initialize CNN and LSTM model parameters, including:
- Convolutional layer parameters: kernel size, number of filters, and activation functions.
- LSTM layer parameters: number of units and activation functions.
Initialization:
. Assign initial values to the CNN layer weights, bias terms, and LSTM weights.
. Initialize the learning rate and the set early stopping criteria based on the validation loss.
Processing:
1. CNN Feature Extraction:
- Convolution Operation: For each input X;, perform the convolution operator using filters W to extract spatial
features.
Feony =ReLUW .+ X + b.)
- Pooling Layer: Apply max or average pooling to reduce dimensionality and retain important features.
- Flattening: Collapse the output of the final convolutional layer into the one-dimensional vector Ffiat to be fed
into the LSTM.
2. LSTM Temporal Sequence Modeling:
- Sequence Processing: Pass the flattened features Friar through the LSTM layer to capture temporal
dependencies.

- LSTM Gate Mechanisms:
. Forget Gate:
fe=0(Wrlhe1,Ffia + bs)
. Input Gate:
ie = o(Wilhe—1,Fpiae] + b:), Co = tanh We[he_y,Fprae] + bo)
. Output Gate:

0= O'(Wo-[ht—l»Fflat] + bo)
. Cell State Update: N
Ce=fr+Ce1+ip.Cy

. Hidden State Update:
h¢ = 0. tanh(Cy)

3. Output Layer:
. Use the final LSTM hidden state h¢ to make the DNI prediction according to the following expression:
Y =wyh +b,
End for
Outputs: .
. Predicted DNI Values: Y, the forecasted solar irradiance values.

Algorithm 1. Algorithm corresponding the hybrid CNN-LSTM model.

from a prescribed center located through a kernel function by building a map of features. This space is designed
to facilitate the prediction task of regression, whereas in the original feature space, the number of samples is
very large. This method has shown remarkable forecasting performance, proving to be a strong generalization
tool that does not need to know in advance the distribution of the error, as well as being able to easily manage
small datasets with high computational efficiency. The aim is to find the hypothesis that best approximates the
functional relationship between input vectors (independent variable) and dependent scalar values (response) to

propose a refined forecast>4-3°,

Design of ANNs

In general, the ANNs are computational models inspired by biological neural systems, mimicking the synaptic
connections found in the human brain. These systems learn tasks or solve problems through adaptation,
optimization, or experiential learning rather than following predefined rules. Similar to the human brain, ANNs
represent knowledge through the weighted connections between nodes, analogous to neuronal connections.
ANNEs are particularly well-suited for modeling complex, non-linear relationships and are typically trained using
supervised learning methods, wherein the model makes statistical inferences or decisions based on input data.
By incorporating new observations, ANNs can iteratively improve their performance on specific tasks. These
networks are designed to perform specific functions and can generalize across diverse types and varieties of
features. Over the past decade, ANN models have demonstrated significant promise in various applications.
Notably, FFBP and CFBP models have achieved high levels of success in data classification and recognition
tasks. In FFBP, data flows unidirectionally from input to output through fully connected layers, with each neuron

computing activations based on the weighted sum of its inputs:

D = f (W0alD 4 p0)
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and training is performed using backpropagation, updating weights via the following expression

OE

(1) (1-1) _
WY «— W 778W(l>

(11)

Here, the CFPB enhances the FFBP by adding convolutional layers for automated feature extraction, where
feature maps are computed using the following expression.

Zijk = ZXi+m,j+n-Km,n,k + by, (12)

m,n

followed by pooling layers to reduce dimensions. Both architectures minimize a loss
1 &
E== L (yi, y: 13
- le (i, 72) (13)

through gradient descent, with FFBP excelling in structured data tasks and CFPB excelling in spatially
hierarchical data like images.

Results and discussions

In this section, we present the performance of the proposed hybrid CNN-LSTM model for time series prediction
and compare it with other models, including SVR, CFBP, and FFBP models. The performance evaluation starts
with analyzing the correlation between SR and the input meteorological variables, followed by a discussion on
the predictive performance of all models. Figure 3 illustrates the workflow for SR forecasting using machine
learning models.

Correlation analysis
Figure 4 depicts the relationship between SR and the key meteorological variables, such as maximum
temperature (T'maz), minimum temperature (Trnin), wind speed (WS), time, humidity (Hwum), and pressure
(Pr). According to Fig. 4, there are strong positive correlations between SR and both T'ae and Tinin, indicating
that higher SR values are associated with higher temperatures. Additionally, SR shows a positive correlation with
time, reflecting its diurnal pattern. Conversely, SR has negative correlations with WS, Hum, and Pr, suggesting
that higher SR values are linked to lower wind speeds, lower humidity, and decreased atmospheric pressure.
These relationships highlight the complex interactions between SR and meteorological factors, which are
essential for feature selection in predictive modeling.

Based on the observed positive linear relationship between the current SR measurement y (i) and its lagged
value y (1 — 1) as shown in the scatter plots, the proposed architecture (illustrated in Fig. 5) can be expressed
mathematically by

Load the dataset: Meteorological and SR data from

Ghardaia, Algeria.

Preprocess the data: Handle missing values,
normalize features, and split the dataset
(training 85% and testing 15%).

L] CNN-LSTM
Train data (Train each model using the training FEBP
dataset) CEPB
SVR

Validate the performance using cross-validation or
a validation set

MSE, RMSE, ‘
MAE, MAPE, 4 Evaluation based-performance metrics ‘
NRMSE, R? 'y

’ Compare the performance of all models ‘

‘ Determine the robustness of the model forecast |

Fig. 3. Flowchart for SR forecasting using machine learning models.
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Scatter plots of relationships between solar radiation and other meteorological variables.
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Fig. 4. Correlation Matrix Between Solar Radiation (SR) and Meteorological Variables (Temperature,
Humidity, Wind Speed) in Ghardaia (2017-2023).

Y;

Shifting
operator

Fig. 5. Proposed ANN architecture incorporating lagged SR and meteorological features for prediction step.

vyi)=f(y(E-1),x1,X2,...,Xn) (14)

where y (i) and y (i — 1) are, respectively, the current SR measurement and the lagged SR measurement, which
presents the one-time step before occurring y (i). Also, x1,X2, . .., Xn are additional input features, including
Tmaz » Tmin, WS, Hum and pressure Pr. Finally, f (-) is the nonlinear mapping function learned by the
proposed Model ANN architecture. Moreover, Eq. (14) indicates that the proposed model utilizes the temporal
dependency that is captured through the lagged value y (i — 1). It simultaneously utilizes the influence of
meteorological features (x1,X2, . ..,Xn) to predict y (i). Also, the nonlinear function f (-), implemented via
the ANN model with a shifting operator, effectively captures the observed positive linear relationship and
complex interactions between the inputs and the target SR values. This approach highlights the importance of
incorporating both temporal dynamics and environmental variables for accurate SR forecasting. The proposed
ANN Architecture incorporating lagged SR and meteorological features for prediction is shown in Fig. 5.
Figure 6 gives a scatter plot collection illustrating the relationship of time-varying SR measures y (i) and
their lagged values y (i— 1), y(i—2), y(i—3), y (i — 4). More generally, this is known as a scatter plot
matrix of the correlation coefficients. Thus, the plots of current SR measure and its past measures illustrate the
temporal dependencies that may be present. The scatter plots show that there is a positive linear relationship
between y (i) and its lagged versions; hence, high values of current SR are usually associated with high values
of past measurements. Such consistency in trends reflects the strong temporal relationship within the SR data.
In addition, the coefficient of determination, R? seen in the upper-right corner of each plot represents the
percentage of variance in y (i) explained by each measurement. For example, the R? value of 0.986 for the
relationship of y (i) to y (i — 1) indicates that 98.6% of the variability in y (i) can be explained by its most recent
past value. These temporal correlations and R? values underline the predictive relationships between current
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Fig. 7. Actual vs. Predicted Solar Irradiance (SR) Values for CNN-LSTM, SVR, CFBP, and FFBP Models
(2020-2023).

and lagged solar radiation, which imply that it is important to include lagged variables in time series forecasting
models for an effective capture of the dynamics of SR over time.

Model performance comparison

In this section, we compare the performance of the proposed hybrid CNN-LSTM model with other prediction
models, including SVR, CFBP, and FFBP, in terms of their accuracy in forecasting SR values over a one-year
period (See Fig. 7).

In Fig. 7, the performance comparison of the proposed hybrid CNN-LSTM model with the SVR, CFBP,
and FFBP models is presented. The SR predictions are plotted alongside the actual observed SR measurements.
This figure demonstrates that the CNN-LSTM model closely follows the observed solar irradiance trends,
particularly during periods of high variability. This highlights the model’s ability to capture complex temporal
dependencies, which is critical for accurate short-term forecasting. In contrast, the SVR and FFBP models show
larger deviations, especially during peak solar irradiance periods.

Figure 8 presents a Taylor diagram comparing the predictive performance of five models: CNN-LSTM, SVR,
CFBP, FFBP, and the actual SR values. The diagram evaluates the models based on three key metrics: standard
deviation, correlation coefficient, and centered root mean square difference (CRMSD). The “True Values point
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Fig. 8. Taylor diagram comparing model performances of CNN-LSTM, SVR, CFBP and FFBP with observed
SR.
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Fig. 9. Box plot and error diagrams for FFBP, CFBP, CNN-LSTM, and SVR approaches.

serves as the reference, with a standard deviation and correlation coefficient of 1.0, indicating perfect agreement.
The CNN-LSTM model is closest to the true values, exhibiting high correlation coefficients and low CRMSD,
signifying strong agreement. In contrast, the SVR, CFBP, and FFBP models show greater discrepancies from the
true values, with lower correlation coefficients and higher CRMSD. This indicates that the CNN-LSTM model
significantly outperforms the others in SR prediction.

Figure 9 presents a box plot comparing the absolute forecast errors of four models: FFBP, CFBP, CNN-LSTM,
and SVR. The box plot displays the distribution of forecast errors, highlighting the median error, interquartile
range, and minimum and maximum values for each model. The CNN-LSTM model shows the smallest median
error and the narrowest interquartile range, indicating the most accurate and consistent forecasts. In comparison,
the SVR model has a slightly higher median error and a wider interquartile range. The FFBP model exhibits the
largest median error and the widest interquartile range, indicating higher and more variable forecast errors. The
CFBP model performs better than FFBP but not as well as CNN-LSTM. Although outliers are present, indicating
occasional large forecast errors for all models, the CNN-LSTM model remains the most reliable and accurate
overall.

Comparative performance evaluation using error metrics

In this section, the comparative performance of different SR prediction models is evaluated using multiple error
metrics, including MSE, RMSE, MAE, MAPE, and nRMSE. These metrics are commonly used to assess the
accuracy of predictive models by quantifying the discrepancies between predicted and observed values*!. Here,
the MSE calculates the average squared difference between the predicted and actual values. It is defined as:
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— 1 - )2
MSE = — Z; (yi — 1) (15)

where y; is the actual value, y; is the predicted value, and n is the number of observations. Also, the RMSE
presents the square root of the MSE. It provides an error value in the same units as the predicted data, making it
easier to interpret. It is defined as*?-%4:

(16)

Moreover, the MAE presents the average of the absolute differences between the actual and predicted values. It
is particularly useful when all errors are treated equally. It is defined as:

1w N
MAE = = E o
P lys — ¥il (17)

Similarly, the MAPE calculates the percentage error between predicted and actual values. It is often used to
express the accuracy of a model in terms of percentage. It is expressed by*>+46:

n

1
MAPE = — Z

i=1

Yi_}/;i

i

x 100 (18)

Finally, the nRMSE normalizes the RMSE by dividing it by the range or mean of the observed values, making it
scale-independent. It is defined as*+43:

RMSE
MSE =
nRMS Range or Mean of y; (19)

These metrics provide different perspectives on model performance. MSE and RMSE penalize larger errors more
heavily, whereas MAE treats all errors equally. MAPE is useful for understanding the error in percentage terms,
and nRMSE offers a normalized error value that accounts for the scale of the data?®48-52, The use of these metrics
helps in selecting the most appropriate model for SR prediction based on the specific characteristics of the data
and the desired application. The table presents a comparative performance analysis of four SR prediction models:
FFBP, CFBP, SVR, and CNN-LSTM across five error metrics: MSE, RMSE, MAPE, MAE, and nRMSE?>.

The CNN-LSTM model consistently outperforms the other models, achieving the lowest values in all metrics,
indicating its superior predictive accuracy. Specifically, it has the smallest MSE (0.0069), RMSE (0.0833), MAPE
(1.1807), MAE (0.0679), and nRMSE (0.0135). These results are significantly lower than values reported in recent
studies. For example, Ahmed et al.® reported an MSE of 0.012 for hybrid models, and Kumari and Toshniwal®
achieved an RMSE of 0.15 for standalone LSTM architectures. The superior performance of the CNN-LSTM
model can be attributed to its ability to capture both spatial and temporal dependencies in solar irradiance data,
a feature not fully exploited by standalone or less integrated architectures.

The MSE calculates the average squared difference between the predicted and actual values, penalizing larger
errors more heavily. The RMSE, derived as the square root of MSE, provides an error value in the same units
as the predicted data, facilitating interpretation. The MAE, which averages absolute differences, treats all errors
equally, while the MAPE expresses errors as percentages, offering intuitive insights into model accuracy. Finally,
the nRMSE normalizes RMSE by the data range, enabling scale-independent comparisons.

As shown in Table 3, the CNN-LSTM model’s MSE (0.0069) is 42.5% lower than the hybrid models reported
by Ahmed et al.%, and its RMSE (0.0833) is 44.5% lower than the standalone LSTM results from Kumari and
Toshniwal®. These improvements highlight the effectiveness of combining CNNs for spatial feature extraction
(e.g., cloud cover patterns) with LSTMs for temporal modeling (e.g., diurnal cycles). In contrast, the FFBP
model exhibits the highest error values across all metrics (MSE =0.2403, RMSE = 0.4902), reflecting its inability
to handle the non-linear and dynamic nature of solar irradiance data. The SVR and CFBP models show
intermediate performance, with SVR achieving an RMSE of 0.1073, which, while competitive, still lags behind
the CNN-LSTM.

The radar chart in Fig. 10 and Taylor diagram in Fig. 8 further corroborate these findings. The CNN-
LSTM model’s proximity to the “True Values” reference in the Taylor diagram (high correlation, low CRMSD)
underscores its alignment with observed data. Additionally, the narrow interquartile range in the box plot (Fig. 9)
confirms the model’s consistency, with minimal outliers compared to FFBP and CFBP. These results demonstrate
that the CNN-LSTM’s hybrid architecture is uniquely suited for solar irradiance forecasting in regions like
Ghardaia, where both spatial variability (e.g., sudden cloud cover) and temporal trends (e.g., seasonal changes)
significantly impact solar potential.

Figure 11 presents a radar chart comparing the performance of four models: CNN-LSTM, SVR, CFPB,
and FFPB across five evaluation metrics: MSE, RMSE, MAPE, MAE, and nRMSE. The CNN-LSTM model
consistently outperforms the others, achieving the lowest values across all metrics, indicating superior accuracy
and reliability. The SVR model shows comparable but slightly inferior performance, while the CFPB model
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FFBP | CFBP | SVR | CCN-LSTM
MSE 0.2403 | 0.0957 | 0.0115 | 0.0069
RMSE | 0.4902 | 0.3093 | 0.1073 | 0.0833
MAPE | 6.7293 | 4.0022 | 1.7752 | 1.1807
MAE 0.3865 | 0.2355 | 0.0862 | 0.0679
nRMSE | 0.0793 | 0.0501 | 0.0174 | 0.0135

Table 3. Error Metrics for CNN-LSTM, SVR, CFBP, and FFBP Models.

—@®— CNNLSTM MSE
—@®—SVR 3:0

CFPB
—@—FFPB

Fig. 10. Comparison of prediction errors for different SR models based on various metrics.

exhibits moderate results. In contrast, the FFPB model performs the worst, with the highest error values in all
metrics. This comparison highlights the robustness of the CNN-LSTM model for the given task

Table 4 presents the coefficient of determination (R?) values for four models: FFBP, CFPB, SVR, and CNN-
LSTM. The R? values highlight the predictive accuracy of each model, with higher values indicating better
performance. The FFBP model shows a reasonable fit with R?=0.95643, while the CFPB model improves to
R?=0.98267, reflecting stronger accuracy. The SVR model achieves near-perfect performance with R?=0.99845,
and the CNN-LSTM model outperforms all others with R?=0.99925, indicating an almost perfect correlation
between predicted and actual values. These results confirm the superiority of the CNN-LSTM and SVR models
for this predictive task.

Conclusion

This study evaluated the performance of FFBP, CFBP, SVR, and the hybrid CNN-LSTM model for solar
radiation (SR) prediction using statistical metrics and visual analytics. The CNN-LSTM model outperformed
all other methods, achieving the lowest errors (MSE=0.0069, RMSE =0.0833, MAE =0.0679, MAPE=1.18%,
nRMSE=0.0135) and the highest coefficient of determination (R?>=0.99925), demonstrating near-perfect
alignment between predicted and actual values. These results surpass recent benchmarks in hybrid models
and standalone architectures, validating the effectiveness of combining spatial feature extraction (CNNs) and
temporal sequencing (LSTMs). Visual tools, including radar charts, Taylor diagrams, and scatter plots, confirmed
the model’s robustness in capturing complex spatial-temporal dependencies inherent in SR data. While the SVR
model showed strong performance, it lagged behind the CNN-LSTM, and the FFBP/CFBP models exhibited
limitations in modeling temporal dynamics.

The CNN-LSTM’s hybrid architecture positions it as a reliable tool for solar energy forecasting, particularly
in regions like Ghardaia, Algeria, where variable weather conditions challenge conventional methods. Practical
applications include optimizing solar farm operations through short term forecasts for energy storage
management, reducing reliance on fossil fuels during low-irradiance periods, and guiding policymakers in
renewable energy planning for grid stability.

Future research should integrate additional meteorological variables such as humidity and wind speed to
refine predictions and explore hybrid architectures with attention mechanisms to enhance long-term forecasting
accuracy. By advancing these models, we can better support global efforts to transition toward sustainable
energy systems, particularly in sun-rich regions where precise solar forecasting is critical for climate resilience
and energy security.
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Fig. 11. Radar chart comparison of model performance metrics. (a) FFBP Model; (b) CFPB Model; (c) SVR
Model and (d) CNN-LSTM Model.

Model

FFBP

CFBP

SVR

CNNLSTM

coefficient of determination R?

0.95643

0.98267

0.99845

0.99925

Table 4. Coefficient of determination (R2) for model performance comparison.
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