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This paper provides an in-depth analysis and performance evaluation of four Solar Radiance (SR) 
prediction models. The prediction is ensured for a period ranging from a few hours to several days of 
the year. These models are derived from four machine learning methods, namely the Feed-forward 
Back Propagation (FFBP) method, Convolutional Feed-forward Back Propagation (CFBP) method, 
Support Vector Regression (SVR), and the hybrid deep learning (DL) method, which combines 
Convolutional Neural Networks and Long Short-Term Memory networks. This combination results in 
the CNN-LSTM model. Additionally, statistical indicators use Mean Squared Error (MSE), Root Mean 
Squared Error (RMSE), Mean Absolute Error (MAE), Mean Absolute Percentage Error (MAPE), and 
Normalized Root Mean Squared Error (nRMSE). Each indicator compares the predicted output by each 
model above and the actual output, pre-recorded in the experimental trial. The experimental results 
consistently show the power of the CNN-LSTM model compared to the remaining models in terms of 
accuracy and reliability. This is due to its lower error rate and higher detection coefficient (R2 = 0.99925).

Keywords  Artificial neural networks, Convolutional neural network, Convolutional feed-forward back 
propagation, Deep learning, Feed-forward back propagation, Long short-term memory, Solar radiance 
forecasting

In recent years, advancements in renewable energy technologies have gained global importance due to the 
increasing demand for sustainable and environmentally friendly energy solutions. Solar energy, as an abundant 
and clean resource, has attracted significant research attention, particularly in optimizing its production and 
integration into power grids. However, the efficiency of solar energy systems depends on the accurate forecasting 
of Direct Normal Irradiance (DNI), which is essential for planning energy generation, optimizing photovoltaic 
(PV) and concentrated solar power (CSP) systems, and ensuring grid stability. Accurate DNI prediction enables 
better energy management, reduces operational costs, and supports large-scale adoption of solar power1–3. Solar 
radiation forecasting is inherently complex due to its dependence on various meteorological factors such as 
cloud cover, atmospheric aerosols, temperature variations, and humidity levels. These factors exhibit nonlinear 
and dynamic behaviors, making it difficult for traditional forecasting methods to provide precise and reliable 
predictions. Conventional approaches, including Numerical Weather Prediction (NWP) models, statistical 
regression techniques, and empirical models, often fail to capture the intricate relationships between these 
meteorological variables. NWP models rely on physics-based simulations, which require high computational 
power, while statistical models assume linear dependencies, limiting their accuracy in highly variable weather 
conditions. In most cases, conventional statistical approaches, such as Linear Regression (LR), are inadequate 
for predicting solar radiation, necessitating more advanced methodologies4–6. This paper emphasizes the 
importance of accurate solar radiation (SR) forecasting, as it is essential for the effective development of 
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renewable energy technologies. The city of Ghardaïa, Algeria, has been chosen as the research focus due to 
its high solar potential and suitability for future solar energy projects. Through studies on SR forecasting, this 
research aims to extend predictive capabilities to other variables related to renewable energy generation. Several 
forecasting methods exist for solar radiation, each suited to different timescales. Long-term forecasts often 
rely on statistical and physical models, while short-term and very short-term forecasts require more advanced 
computational techniques7,8. Ghardaïa’s unique climate, characterized by high variability in cloud conditions, 
necessitates specialized forecasting models, which are a key focus of this study. Additionally, the high demand 
for solar energy in Algeria’s desert regions requires precise predictions, making microclimatic-level modeling 
using numerical meteorological data essential9.

To address these limitations, Artificial Intelligence (AI) and Deep Learning (DL) techniques have emerged 
as powerful tools for solar irradiance forecasting. Unlike traditional models, deep learning approaches can 
automatically learn complex patterns from large datasets, enabling improved predictive accuracy. Among the 
various deep learning architectures, hybrid models combining Convolutional Neural Networks (CNNs) and 
Long Short-Term Memory (LSTM) networks have shown superior performance in time-series forecasting 
tasks. CNNs specialize in spatial feature extraction, identifying patterns in meteorological inputs such as cloud 
movement, temperature fluctuations, and pressure variations. Meanwhile, LSTMs are designed to process 
sequential data, capturing long-term dependencies and trends in solar irradiance fluctuations. By integrating 
CNNs and LSTMs into a single hybrid framework, forecasting models can effectively analyze both spatial 
and temporal dependencies, resulting in more accurate DNI predictions10–13. Recent studies in renewable 
energy systems, such as microbial electrosynthesis14 and biohydrogen production15, have demonstrated the 
transformative potential of hybrid architectures and adaptive optimization. These advancements underscore 
the need for similarly innovative approaches in solar forecasting, particularly in regions like Ghardaïa with high 
climatic variability.

We focus on the integration of advanced neural networks and hybrid deep learning (DL) techniques. 
Below are the key highlights of our study, showcasing significant advancements in AI-based approaches while 
addressing the limitations of conventional forecasting models:

	1	 Advanced AI Techniques Integration: The research utilizes a combination of conventional Artificial Neural 
Networks (ANNs) and DL methods, specifically CNN-LSTM models, to improve solar radiation forecasting 
by effectively handling complex meteorological data.

	2.	 Focus on Ghardaïa, Algeria: Centered in Ghardaïa, a region with significant solar potential, the study tailors 
its findings to local climatic conditions marked by variable cloud cover and atmospheric factors.

	3.	 Hybrid CNN-LSTM Model: By combining CNNs for spatial feature extraction and LSTMs for capturing 
temporal dependencies, the hybrid model effectively addresses the nonlinear nature of SR data.

	4.	 Evaluation of ANN Architectures: The study compares various ANN architectures, including Feed-Forward 
Back Propagation (FFBP), Convolutional FFBP (CFBP), Support Vector Regression (SVR), and the hybrid 
CNN-LSTM approach, using advanced training algorithms to identify the most effective techniques for solar 
radiation forecasting.

	5.	 Acknowledgement of Limitations and Contributions: While demonstrating the advantages of AI-driven ap-
proaches, the research acknowledges challenges such as data scarcity and model complexity, emphasizing 
the importance of optimizing input parameters for accurate solar predictions and contributing to renewable 
energy management.

This study focuses on developing a hybrid CNN-LSTM-based DNI forecasting framework and applying it to the 
Ghardaïa region in Algeria, known for its high solar potential and climate variability. The region experiences 
significant variations in temperature, humidity, wind speed, and dust storms, all of which impact solar irradiance 
levels. A reliable forecasting model tailored to these conditions is crucial for optimizing solar energy production 
and supporting Algeria’s renewable energy initiatives.

The dataset used in this study is sourced from NASA’s Prediction of Worldwide Energy Resources (POWER) 
project, covering the period from 2017 to 2023, and consists of 2575 daily observations. The key meteorological 
parameters include DNI, maximum and minimum temperature, wind speed, specific humidity, and surface 
pressure. These variables play a critical role in training deep learning models to capture variations in solar 
radiation and improve forecasting accuracy.

To evaluate the performance of the proposed CNN-LSTM model, its predictions are compared against 
conventional forecasting techniques, including Feed-Forward Back Propagation (FFBP), Convolutional FFBP 
(CFBP), and Support Vector Regression (SVR). The models are assessed using multiple statistical performance 
metrics, including Mean Squared Error (MSE), Root Mean Squared Error (RMSE), Mean Absolute Error (MAE), 
Mean Absolute Percentage Error (MAPE), Normalized Root Mean Squared Error (nRMSE), and the coefficient 
of determination (R2).

The results demonstrate that the CNN-LSTM model significantly outperforms traditional approaches, 
achieving lower forecasting errors and higher accuracy, making it a promising solution for real-world solar energy 
management. Beyond its technical contributions, this study highlights practical applications in optimizing solar 
power plant operations, improving energy grid stability, and supporting long-term renewable energy policies.

The structure of the paper is section “Related works” reviews related work on AI-based solar irradiance 
forecasting. Section “Materials and methods” describes the methodology, including dataset preparation, 
preprocessing, and model architecture. Section “Results and discussions” presents experimental results and 
comparative performance analysis. Finally, Section “Conclusion” concludes the study and discusses potential 
future research directions.
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Related works
In recent years, researchers have shown considerable interest in SR forecasting, dedicating numerous studies 
to this field. SR is influenced by geographic characteristics of the Earth’s surface and surrounding weather 
conditions. Unfortunately, it is subjected to uncontrollable changes, such as seasonal and diurnal variations, city 
locations, and cloud abundance. Consequently, accurate estimation of SRon Earth is crucial for maximizing solar 
operations. SR forecasting is crucial in renewable energy systems. Accurate predictions can minimize energy 
costs and optimize energy production, enabling plants to contribute effectively to energy supply chains, and 
supporting commerce, industry, and transportation services consistently. Various types of forecasting problems, 
such as electric load, wind, and solar power requests, have been a focus for decades. Today, solar power is essential 
and increasingly contributes to the electricity mix, becoming competitive with conventional sources. Regardless 
of the specific applications, solar power forecasting involves system-referenced interfaces encompassing 
inputs as controllable factors and the proposed output results. Paper16 provides an overview of advancements 
in forecasting methods for wind and solar energy, highlighting improvements in forecast skill, the impact of 
blockchain technology on data transactions, evolving business models in the renewable sector, and challenges 
posed by integrating high levels of renewable energy into power systems. The authors in the paper17 explore 
various methodologies for energy prediction and management in the context of renewable energy and electricity 
consumption forecasting. Article18 presents a comprehensive review of solar irradiance resources and forecasting 
techniques, focusing on using sensor networks for accurate solar power generation predictions. The authors in 
the paper19 investigate various methods of wind power forecasting, focusing on their analysis, prediction time 
scales, error measurements, and accuracy improvements to enhance the efficiency of wind energy systems. ANNs 
have been predominantly used in SR estimation. SR patterns undergo dynamic spatial variation in any region 
where geographic and weather conditions are not constant over time. Consequently, ANNs emerge as a flexible 
transfer function, making excellent forecasts of solar data patterns. Numerous studies have used ANNs for SR 
forecasting in various areas, showcasing the potential of this approach. The generalization capabilities of ANNs 
were highlighted by authors in20, demonstrating their strength in handling noisy and incomplete real-world data. 
This capability is crucial in modeling solar radiation, as it involves intricate and variable datasets. The review 
of 54 papers by Eisa underscores the importance of selecting performance criteria and network architecture 
as foundational steps toward successful forecasting in diverse contexts. Based on this foundation, Voyant et 
al.21 investigate the predictability of solar irradiation, particularly for insular locations without weather stations. 
This paper presents innovative work using physical phenomena to improve ANN predictions by addressing 
challenges posed by non-stationarity in solar data. By incorporating extraterrestrial irradiation coefficients, they 
successfully improve prediction quality, showcasing ANNs’ adaptability in unique environmental conditions. 
In the paper22, the authors advance the discourse by introducing radial basis function networks for estimating 
SRin areas without direct measurements. Their approach includes univariate and multivariate forecasting 
techniques, highlighting the versatility of ANNs in different climatic contexts. The authors demonstrate that 
ANNs can effectively model solar radiation, emphasizing the need for selecting appropriate input parameters 
to optimize performance. Hoyos-Gómez et al., in a paper23, address the increasing demand for accurate solar 
irradiance forecasting due to the proliferation of solar power generation systems. They highlight the robustness 
of ANNs, fuzzy logic, and hybrid models in capturing systematic errors, reinforcing ANNs’ status as a leading 
technique in solar irradiance modeling. Their review of existing studies indicates a significant gap in research 
focused on tropical environments, signaling an area for future exploration. Bou Nassif et al. review various 
methodologies combining ANN with statistical techniques for short-term load forecasting. They note that 
integrating additional input parameters can enhance ANN accuracy, further supporting the notion that ANNs 
can be effectively tailored to specific forecasting challenges24. Recent advancements are reflected in25, which 
focuses on the critical role of short-term PV forecasts in energy dispatch decisions. Their study illustrates the 
evolution of prediction methods, emphasizing the necessity of incorporating a broader range of meteorological 
features alongside traditional solar irradiance data. This approach aligns with the trend of enhancing ANN 
models to improve forecasting precision. Nawaeb et al., in26, provide a comparative review of empirical and 
AI-based approaches to solar irradiation forecasting, stressing that ANNs are widely used across different 
geographical settings. Region-specific studies have also gained prominence. For instance, Benali et al.27 applied 
a hybrid CNN-LSTM model to North African solar datasets, emphasizing the importance of localized feature 
engineering for arid climates. Their findings validate our methodology of integrating NASA POWER data with 
lagged SR measurements for Ghardaïa. Additionally, Chen et al. in28 explored the fusion of satellite-derived 
cloud dynamics with ground-based sensors using CNN-LSTM and achieved sub-hourly irradiance predictions, 
complementing our use of NASA’s CERES/MERRA2 dataset. Their results indicate that although empirical 
methods remain relevant, the trend shows a tendency toward AI models more accurately, ANNs when accuracy in 
predictions is required. Finally, innovative ML techniques in29 are applied to solar energy estimation, notably the 
source-free domain adaptation approach. Their work highlights the potential of advanced ANN configurations, 
such as LSTM networks, to adapt dynamically to changing environmental conditions, thereby improving 
predictive performance across different regions. Recent comparative studies, such as Wang & Li30, have shown 
that hybrid CNN-LSTM models outperform transformer-based architectures for short-term forecasts due to 
their localized spatial feature extraction capabilities. This aligns with our model’s design, which prioritizes short-
term accuracy for energy dispatch planning. Furthermore, ethical considerations in renewable energy AI are 
increasingly addressed through explainability frameworks. For example, Ibrahim et al. in31 integrated SHAP 
(SHapley Additive exPlanations) into solar forecasting models to interpret feature contributions, highlighting a 
direction we recognize as crucial for future work. Recent advancements in hybrid models have further improved 
solar irradiance forecasting. Zhang et al. in32 proposed a spatio-temporal transformer combined with LSTM, 
achieving state-of-the-art accuracy in arid regions like Ghardaïa. Similarly, Kumar et al. in33 demonstrated that 
attention-augmented CNN-LSTM architectures significantly improve forecasting robustness for non-stationary 
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solar data. These studies highlight the growing emphasis on hybrid architectures for capturing both spatial and 
temporal dependencies, a critical requirement for regions with high climatic variability.

In this study, we will present a comparative analysis of a CNN-LSTM model against several traditional 
forecasting methods, including SVR and multiple configurations of Feed Forward and Convolutional Feed-
forward ANNs. The performance of each model will evaluate using key metrics: MSE, RMSE, MAE, MAPE, 
nRMSE, and the coefficient of determination (R2).

Materials and methods
This section outlines the methodology employed in this study, including dataset acquisition, preprocessing 
techniques, model architecture, and performance evaluation. We focus on the integration of advanced deep 
learning techniques, particularly CNN-LSTM models, to enhance solar radiation forecasting by leveraging both 
spatial feature extraction and temporal sequence learning.

Dataset collection
The dataset used in this study is sourced from NASA’s Prediction of Worldwide Energy Resources (POWER) 
project, covering the period from 2017 to 2023. The study focuses on Ghardaïa, Algeria (Table 1), an area with 
high solar potential and significant climatic variability, making it ideal for evaluating deep learning-based solar 
forecasting models. The dataset consists of 2575 daily observations of meteorological parameters critical for 
solar irradiance forecasting (Table 2).

Data preprocessing
Data preprocessing is essential to ensure the quality and consistency of inputs for deep learning models. In this 
study, missing values are handled using linear interpolation to maintain data continuity, while all features are 
normalized to the [0,1] range using Min–Max normalization to enhance convergence during training. Feature 
engineering involves introducing temporal lag variables to help LSTMs capture time-dependent patterns and 
conducting correlation analysis to select the most relevant meteorological features. The dataset is then split into 
85% training and 15% testing data to evaluate model performance on unseen observations. Finally, the data 
is formatted into 3D input sequences, making it suitable for CNN-LSTM models by incorporating multiple 
timesteps to capture sequential dependencies effectively. The different ML and DL models used for solar 
irradiance forecasting are represented in Fig. 1.

The CNN design model
The CNN is employed to extract spatial features from meteorological data, such as temperature, humidity, and 
cloud cover, which are critical for understanding local weather patterns. For example, convolutional layers can 
identify regions of high cloud coverage that may reduce solar irradiance. The dataset, which includes climatic 
variables measured at 10-min intervals, is well-suited for CNN processing due to its multidimensional structure 
and large scale29,34–38.This allows the model to capture complex spatial patterns that influence solar irradiance. 
The architecture of CNNs typically consists of multiple layers, including convolutional layers with local receptive 
fields. These layers allow the model to apply convolution matrices to specific segments of the input data, 
mathematically represented as follows:

	
(f ∗ w) (i, j) =

∑
m

∑
n

f (m, n) .w (i − m, j − n)� (1)

Variable Description

ALLSKY_SFC_SW_DWN All sky surface shortwave downward irradiance (kW-hr/m2/day)

WS2M WS at 2 m above ground level (m/s)

T2M_MAX Maximum temperature at 2 m above ground level (°C)

T2M_MIN Minimum temperature at 2 m above ground level (°C)

QV2M Specific humidity at 2 m above ground level (g/kg)

PS Surface pressure (kPa)

Table 2.  Parameters and descriptions.

 

Category Details

Source NASA POWER (CERES/MERRA2)

Location Latitude: 32.4466° N, Longitude: 3.6992° E

Elevation 522.19 m

Time Period January 1, 2017–December 31, 2023

Resolution 0.5° × 0.625° latitude/longitude

Table 1.  Dataset overview and metadata.
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This feature extraction process not only reduces the size but also enhances the model’s resilience by maintaining 
invariant properties. The activation function, usually of the Rectified Linear Unit (ReLU) type, is applied post-
convolution and is expressed as follows:

	 a (x) = max (0, x)� (2)

Additionally, max pooling is employed to down sample the feature maps, which can be represented as:

	
p (i, j) = max

m,n∈poolingregion
f (i + m, j + n)� (3)

Ultimately, the output of the fully connected layer is computed using the equation:

	 y = W.a + b� (4)

Such robustness is critical in this study, especially when considering the minimal spatial invariance of cloud 
patterns that influence solar irradiance. In designing the solar radiance model, the first two layers function as 
convolutional layers, where they capture essential features from the input data. Following these are the flatten 
layer, which converts the multidimensional outputs of the convolutional layers into a one-dimensional vector, 
allowing for seamless integration with the LSTM layers.

The LSTM networks
The LSTM networks were first proposed in 1997 as a specific type of Recurrent Neural Networks (RNNs) 
designed explicitly to overcome the long-term dependency problem that architectures more general than 
RNNs usually suffer from. We utilize, in this study, LSTM networks in effectively forecasting direct normal 
irradiance by harnessing the strengths that come with LSTM in dealing with time-series data. The architecture 
of LSTM networks involves several types of gates, which control the flow of input data while training. This gating 
mechanism is relevant in our context because it allows the model to forget or remember information selectively; 
this is important to prevent the vanishing gradient often found in long sequences. This capability can empower 
LSTMs in transferring relevant information through the forecasting process, ensuring that important temporal 
patterns in solar irradiance data are recognized and utilized. The LSTM model utilizes three main gates to 
control information flow: the input gate, forget gate, and output gate. These gates are represented mathematically 
to decide what information should be added to or removed from the cell state. In Fig. 2 illustrate the internal 
structure of the LSTM cell is shown, which is used as a basic component for processing sequences in time-series 
data.

The input gate controls how much new information is added to the cell state and defined as:

	 it = σ (Wi. [ht−1, xt] + bi)� (5)

where it represents the input gate, Wi the weight matrix, ht−1 the previous hidden state, xt the current input, 
and bi the bias. The forget gate determines how much of the past information is retained and is given by:

	 ft = σ (Wf . [ht−1, xt] + bf )� (6)

where ft is the forget gate, Wf  the weight matrix, and bf  the bias term. The cell state update equation, which 
integrates both the forget and input gates, is expressed as:

	 Ct = ft ∗ Ct−1 + it ∗ tanh (Wc. [ht−1, xt] + bC)� (7)

where Ct is the cell state at time t, Ct−1 is the previous cell state, and Wc the weight matrix associated with 
the cell state update. Finally, the output gate determines the next hidden state that is passed forward and is 
represented as:

	 ot = σ (Wo. [ht−1, xt] + bo)� (8)

Fig. 1.  Different models for solar irradiance forecasting.
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	 ht = ot ∗ tanh Ct� (9)

where ht is the new hidden state, influenced by the output of the cell state Ct, and ot is the output gate. By 
integrating LSTMs into our hybrid CNN-LSTM model, we aim to enhance the model’s ability to capture intricate 
temporal patterns in solar irradiance, thereby contributing to more accurate solar energy forecasting in the 
region of Ghardaïa, Algeria.

The framework of the hybrid CNN-LSTM
The proposed CNN-LSTM hybrid model is designed for short-term forecasting of Direct Normal Irradiance 
(DNI) using meteorological data from Ghardaïa, Algeria. This framework combines the spatial feature 
extraction capability of CNNs with the temporal sequence learning of LSTMs, ensuring improved forecasting 
accuracy. CNNs identify spatial dependencies by applying convolutional filters to meteorological variables such 
as temperature variations, cloud coverage, and humidity distributions, which significantly influence DNI. By 
utilizing localized feature extraction, CNNs detect patterns such as temperature gradients preceding an increase 
in DNI or cloud formations reducing solar radiation, while also reducing data dimensionality and minimizing 
noise. The extracted spatial features are then passed to the LSTM component, which is optimized for learning 
long-term dependencies in solar irradiance fluctuations. LSTMs utilize memory cells and gating mechanisms to 
selectively retain relevant past information while discarding insignificant variations, addressing the vanishing 
gradient problem often encountered in deep sequence models. This allows the LSTM to recognize key temporal 
trends, including seasonal changes in solar radiation, daily DNI fluctuations due to sunrise and sunset, and 
short-term variations caused by atmospheric disturbances. The CNN-LSTM framework is trained on historical 
datasets, with hyperparameters optimized to minimize forecasting errors. The final model outputs precise DNI 
predictions, enhancing solar resource management and energy planning in arid and semi-arid regions. The 
design of this hybrid framework aligns with recent advancements in system optimization for renewable energy. 
For example,15 demonstrated how self-regulation and flow rate optimization enhance biohydrogen production, 
underscoring the value of adaptive architectures like CNN-LSTM for handling dynamic solar data. Similarly,39,40 
emphasized the role of energy transfer mechanisms in microbial systems, which inspired our approach to 
capturing temporal dependencies in irradiance data. The algorithm 1 describes a CNN-LSTM model designed 
to forecast DNI for very short-term solar irradiance prediction.

The SVR model designing
The SVR model is an effective and powerful ML technique based on the statistical learning theory introduced as 
a nonlinear development of support vector machines. SVM is one of the most used and effective classification 
and regression algorithms that perform the classification and/or regression tasks based on the principles of 
dimensions. It separates the two classes, or predicts numerical values, by finding the widest margin between the 
observations, reducing the penalty of violating the margin, and ensuring that the forecast error does not exceed 
an error tolerance. SVR is a non-probabilistic model, and it is included in the so-called “kernel method,” which 
operates directly with the input vectors in a high-dimensional implicit feature space, as a function of the distance 

Fig. 2.  The internal structure of the LSTM cell.
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from a prescribed center located through a kernel function by building a map of features. This space is designed 
to facilitate the prediction task of regression, whereas in the original feature space, the number of samples is 
very large. This method has shown remarkable forecasting performance, proving to be a strong generalization 
tool that does not need to know in advance the distribution of the error, as well as being able to easily manage 
small datasets with high computational efficiency. The aim is to find the hypothesis that best approximates the 
functional relationship between input vectors (independent variable) and dependent scalar values (response) to 
propose a refined forecast34–36.

Design of ANNs
In general, the ANNs are computational models inspired by biological neural systems, mimicking the synaptic 
connections found in the human brain. These systems learn tasks or solve problems through adaptation, 
optimization, or experiential learning rather than following predefined rules. Similar to the human brain, ANNs 
represent knowledge through the weighted connections between nodes, analogous to neuronal connections. 
ANNs are particularly well-suited for modeling complex, non-linear relationships and are typically trained using 
supervised learning methods, wherein the model makes statistical inferences or decisions based on input data. 
By incorporating new observations, ANNs can iteratively improve their performance on specific tasks. These 
networks are designed to perform specific functions and can generalize across diverse types and varieties of 
features. Over the past decade, ANN models have demonstrated significant promise in various applications. 
Notably, FFBP and CFBP models have achieved high levels of success in data classification and recognition 
tasks. In FFBP, data flows unidirectionally from input to output through fully connected layers, with each neuron 
computing activations based on the weighted sum of its inputs:

	 a(l) = f
(
W (l)a(l−1) + b(l))� (10)

Algorithm 1. Algorithm corresponding the hybrid CNN-LSTM model.
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and training is performed using backpropagation, updating weights via the following expression

	
W (l) ← W (l−1) − η

∂E

∂W (l)
� (11)

Here, the CFPB enhances the FFBP by adding convolutional layers for automated feature extraction, where 
feature maps are computed using the following expression.

	
zi,j,k =

∑
m,n

Xi+m,j+n.Km,n,k + bk � (12)

followed by pooling layers to reduce dimensions. Both architectures minimize a loss

	
E = 1

n

N∑
i=1

L (yi, ŷi)� (13)

through gradient descent, with FFBP excelling in structured data tasks and CFPB excelling in spatially 
hierarchical data like images.

Results and discussions
In this section, we present the performance of the proposed hybrid CNN-LSTM model for time series prediction 
and compare it with other models, including SVR, CFBP, and FFBP models. The performance evaluation starts 
with analyzing the correlation between SR and the input meteorological variables, followed by a discussion on 
the predictive performance of all models. Figure 3 illustrates the workflow for SR forecasting using machine 
learning models.

Correlation analysis
Figure  4 depicts the relationship between SR and the key meteorological variables, such as maximum 
temperature (Tmax), minimum temperature (Tmin), wind speed (W S), time, humidity (Hum), and pressure 
(P r). According to Fig. 4, there are strong positive correlations between SR and both Tmax and Tmin, indicating 
that higher SR values are associated with higher temperatures. Additionally, SR shows a positive correlation with 
time, reflecting its diurnal pattern. Conversely, SR has negative correlations with WS, Hum, and Pr, suggesting 
that higher SR values are linked to lower wind speeds, lower humidity, and decreased atmospheric pressure. 
These relationships highlight the complex interactions between SR and meteorological factors, which are 
essential for feature selection in predictive modeling.

Based on the observed positive linear relationship between the current SR measurement y (i) and its lagged 
value y (i − 1) as shown in the scatter plots, the proposed architecture (illustrated in Fig. 5) can be expressed 
mathematically by

Fig. 3.  Flowchart for SR forecasting using machine learning models.
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	 y (i) = f (y (i − 1) , x1, x2, . . . , xn)� (14)

where y (i) and y (i − 1) are, respectively, the current SR measurement and the lagged SR measurement, which 
presents the one-time step before occurring y (i). Also, x1, x2, . . . , xn are additional input features, including 
Tmax , Tmin, W S, Hum and pressure P r. Finally, f (·) is the nonlinear mapping function learned by the 
proposed Model ANN architecture. Moreover, Eq. (14) indicates that the proposed model utilizes the temporal 
dependency that is captured through the lagged value y (i − 1). It simultaneously utilizes the influence of 
meteorological features (x1, x2, . . . , xn) to predict y (i). Also, the nonlinear function f (·), implemented via 
the ANN model with a shifting operator, effectively captures the observed positive linear relationship and 
complex interactions between the inputs and the target SR values. This approach highlights the importance of 
incorporating both temporal dynamics and environmental variables for accurate SR forecasting. The proposed 
ANN Architecture incorporating lagged SR and meteorological features for prediction is shown in Fig. 5.

Figure 6 gives a scatter plot collection illustrating the relationship of time-varying SR measures y (i) and 
their lagged values y (i − 1) , y (i − 2) , y (i − 3) , y (i − 4). More generally, this is known as a scatter plot 
matrix of the correlation coefficients. Thus, the plots of current SR measure and its past measures illustrate the 
temporal dependencies that may be present. The scatter plots show that there is a positive linear relationship 
between y (i) and its lagged versions; hence, high values of current SR are usually associated with high values 
of past measurements. Such consistency in trends reflects the strong temporal relationship within the SR data. 
In addition, the coefficient of determination, R2 seen in the upper-right corner of each plot represents the 
percentage of variance in y (i) explained by each measurement. For example, the R2 value of 0.986 for the 
relationship of y (i) to y (i − 1) indicates that 98.6% of the variability in y (i) can be explained by its most recent 
past value. These temporal correlations and R2 values underline the predictive relationships between current 

Fig. 5.  Proposed ANN architecture incorporating lagged SR and meteorological features for prediction step.

 

Fig. 4.  Correlation Matrix Between Solar Radiation (SR) and Meteorological Variables (Temperature, 
Humidity, Wind Speed) in Ghardaïa (2017–2023).
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and lagged solar radiation, which imply that it is important to include lagged variables in time series forecasting 
models for an effective capture of the dynamics of SR over time.

Model performance comparison
In this section, we compare the performance of the proposed hybrid CNN-LSTM model with other prediction 
models, including SVR, CFBP, and FFBP, in terms of their accuracy in forecasting SR values over a one-year 
period (See Fig. 7).

In Fig.  7, the performance comparison of the proposed hybrid CNN-LSTM model with the SVR, CFBP, 
and FFBP models is presented. The SR predictions are plotted alongside the actual observed SR measurements. 
This figure demonstrates that the CNN-LSTM model closely follows the observed solar irradiance trends, 
particularly during periods of high variability. This highlights the model’s ability to capture complex temporal 
dependencies, which is critical for accurate short-term forecasting. In contrast, the SVR and FFBP models show 
larger deviations, especially during peak solar irradiance periods.

Figure 8 presents a Taylor diagram comparing the predictive performance of five models: CNN-LSTM, SVR, 
CFBP, FFBP, and the actual SR values. The diagram evaluates the models based on three key metrics: standard 
deviation, correlation coefficient, and centered root mean square difference (CRMSD). The ‘True Values’ point 

Fig. 7.  Actual vs. Predicted Solar Irradiance (SR) Values for CNN-LSTM, SVR, CFBP, and FFBP Models 
(2020–2023).

 

Fig. 6.  Scatter plots depicting temporal correlations between SR measurements and their lagged values.
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serves as the reference, with a standard deviation and correlation coefficient of 1.0, indicating perfect agreement. 
The CNN-LSTM model is closest to the true values, exhibiting high correlation coefficients and low CRMSD, 
signifying strong agreement. In contrast, the SVR, CFBP, and FFBP models show greater discrepancies from the 
true values, with lower correlation coefficients and higher CRMSD. This indicates that the CNN-LSTM model 
significantly outperforms the others in SR prediction.

Figure 9 presents a box plot comparing the absolute forecast errors of four models: FFBP, CFBP, CNN-LSTM, 
and SVR. The box plot displays the distribution of forecast errors, highlighting the median error, interquartile 
range, and minimum and maximum values for each model. The CNN-LSTM model shows the smallest median 
error and the narrowest interquartile range, indicating the most accurate and consistent forecasts. In comparison, 
the SVR model has a slightly higher median error and a wider interquartile range. The FFBP model exhibits the 
largest median error and the widest interquartile range, indicating higher and more variable forecast errors. The 
CFBP model performs better than FFBP but not as well as CNN-LSTM. Although outliers are present, indicating 
occasional large forecast errors for all models, the CNN-LSTM model remains the most reliable and accurate 
overall.

Comparative performance evaluation using error metrics
In this section, the comparative performance of different SR prediction models is evaluated using multiple error 
metrics, including MSE, RMSE, MAE, MAPE, and nRMSE. These metrics are commonly used to assess the 
accuracy of predictive models by quantifying the discrepancies between predicted and observed values41. Here, 
the MSE calculates the average squared difference between the predicted and actual values. It is defined as:

Fig. 9.  Box plot and error diagrams for FFBP, CFBP, CNN-LSTM, and SVR approaches.

 

Fig. 8.  Taylor diagram comparing model performances of CNN-LSTM, SVR, CFBP and FFBP with observed 
SR.
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MSE = 1

n

n∑
i=1

(yi − ŷi)
2� (15)

where yi is the actual value, ŷi is the predicted value, and n is the number of observations. Also, the RMSE 
presents the square root of the MSE. It provides an error value in the same units as the predicted data, making it 
easier to interpret. It is defined as42–44:

	

RMSE =

√√√√ 1
n

n∑
i=1

(yi − ŷi)
2� (16)

Moreover, the MAE presents the average of the absolute differences between the actual and predicted values. It 
is particularly useful when all errors are treated equally. It is defined as:

	
MAE = 1

n

n∑
i=1

|yi − ŷi|� (17)

Similarly, the MAPE calculates the percentage error between predicted and actual values. It is often used to 
express the accuracy of a model in terms of percentage. It is expressed by45,46:

	
MAPE = 1

n

n∑
i=1

∣∣∣∣
yi − ŷi

yi

∣∣∣∣ × 100� (18)

Finally, the nRMSE normalizes the RMSE by dividing it by the range or mean of the observed values, making it 
scale-independent. It is defined as47,48:

	
nRMSE = RMSE

Range or Mean of yi
� (19)

These metrics provide different perspectives on model performance. MSE and RMSE penalize larger errors more 
heavily, whereas MAE treats all errors equally. MAPE is useful for understanding the error in percentage terms, 
and nRMSE offers a normalized error value that accounts for the scale of the data48,48–52. The use of these metrics 
helps in selecting the most appropriate model for SR prediction based on the specific characteristics of the data 
and the desired application. The table presents a comparative performance analysis of four SR prediction models: 
FFBP, CFBP, SVR, and CNN-LSTM across five error metrics: MSE, RMSE, MAPE, MAE, and nRMSE53.

The CNN-LSTM model consistently outperforms the other models, achieving the lowest values in all metrics, 
indicating its superior predictive accuracy. Specifically, it has the smallest MSE (0.0069), RMSE (0.0833), MAPE 
(1.1807), MAE (0.0679), and nRMSE (0.0135). These results are significantly lower than values reported in recent 
studies. For example, Ahmed et al.6 reported an MSE of 0.012 for hybrid models, and Kumari and Toshniwal5 
achieved an RMSE of 0.15 for standalone LSTM architectures. The superior performance of the CNN-LSTM 
model can be attributed to its ability to capture both spatial and temporal dependencies in solar irradiance data, 
a feature not fully exploited by standalone or less integrated architectures.

The MSE calculates the average squared difference between the predicted and actual values, penalizing larger 
errors more heavily. The RMSE, derived as the square root of MSE, provides an error value in the same units 
as the predicted data, facilitating interpretation. The MAE, which averages absolute differences, treats all errors 
equally, while the MAPE expresses errors as percentages, offering intuitive insights into model accuracy. Finally, 
the nRMSE normalizes RMSE by the data range, enabling scale-independent comparisons.

As shown in Table 3, the CNN-LSTM model’s MSE (0.0069) is 42.5% lower than the hybrid models reported 
by Ahmed et al.6, and its RMSE (0.0833) is 44.5% lower than the standalone LSTM results from Kumari and 
Toshniwal5. These improvements highlight the effectiveness of combining CNNs for spatial feature extraction 
(e.g., cloud cover patterns) with LSTMs for temporal modeling (e.g., diurnal cycles). In contrast, the FFBP 
model exhibits the highest error values across all metrics (MSE = 0.2403, RMSE = 0.4902), reflecting its inability 
to handle the non-linear and dynamic nature of solar irradiance data. The SVR and CFBP models show 
intermediate performance, with SVR achieving an RMSE of 0.1073, which, while competitive, still lags behind 
the CNN-LSTM.

The radar chart in Fig.  10 and Taylor diagram in Fig.  8 further corroborate these findings. The CNN-
LSTM model’s proximity to the “True Values” reference in the Taylor diagram (high correlation, low CRMSD) 
underscores its alignment with observed data. Additionally, the narrow interquartile range in the box plot (Fig. 9) 
confirms the model’s consistency, with minimal outliers compared to FFBP and CFBP. These results demonstrate 
that the CNN-LSTM’s hybrid architecture is uniquely suited for solar irradiance forecasting in regions like 
Ghardaïa, where both spatial variability (e.g., sudden cloud cover) and temporal trends (e.g., seasonal changes) 
significantly impact solar potential.

Figure  11 presents a radar chart comparing the performance of four models: CNN-LSTM, SVR, CFPB, 
and FFPB across five evaluation metrics: MSE, RMSE, MAPE, MAE, and nRMSE. The CNN-LSTM model 
consistently outperforms the others, achieving the lowest values across all metrics, indicating superior accuracy 
and reliability. The SVR model shows comparable but slightly inferior performance, while the CFPB model 
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exhibits moderate results. In contrast, the FFPB model performs the worst, with the highest error values in all 
metrics. This comparison highlights the robustness of the CNN-LSTM model for the given task

.
Table 4 presents the coefficient of determination (R2) values for four models: FFBP, CFPB, SVR, and CNN-

LSTM. The R2 values highlight the predictive accuracy of each model, with higher values indicating better 
performance. The FFBP model shows a reasonable fit with R2 = 0.95643, while the CFPB model improves to 
R2 = 0.98267, reflecting stronger accuracy. The SVR model achieves near-perfect performance with R2 = 0.99845, 
and the CNN-LSTM model outperforms all others with R2 = 0.99925, indicating an almost perfect correlation 
between predicted and actual values. These results confirm the superiority of the CNN-LSTM and SVR models 
for this predictive task.

Conclusion
This study evaluated the performance of FFBP, CFBP, SVR, and the hybrid CNN-LSTM model for solar 
radiation (SR) prediction using statistical metrics and visual analytics. The CNN-LSTM model outperformed 
all other methods, achieving the lowest errors (MSE = 0.0069, RMSE = 0.0833, MAE = 0.0679, MAPE = 1.18%, 
nRMSE = 0.0135) and the highest coefficient of determination (R2 = 0.99925), demonstrating near-perfect 
alignment between predicted and actual values. These results surpass recent benchmarks in hybrid models 
and standalone architectures, validating the effectiveness of combining spatial feature extraction (CNNs) and 
temporal sequencing (LSTMs). Visual tools, including radar charts, Taylor diagrams, and scatter plots, confirmed 
the model’s robustness in capturing complex spatial–temporal dependencies inherent in SR data. While the SVR 
model showed strong performance, it lagged behind the CNN-LSTM, and the FFBP/CFBP models exhibited 
limitations in modeling temporal dynamics.

The CNN-LSTM’s hybrid architecture positions it as a reliable tool for solar energy forecasting, particularly 
in regions like Ghardaïa, Algeria, where variable weather conditions challenge conventional methods. Practical 
applications include optimizing solar farm operations through short term forecasts for energy storage 
management, reducing reliance on fossil fuels during low-irradiance periods, and guiding policymakers in 
renewable energy planning for grid stability.

Future research should integrate additional meteorological variables such as humidity and wind speed to 
refine predictions and explore hybrid architectures with attention mechanisms to enhance long-term forecasting 
accuracy. By advancing these models, we can better support global efforts to transition toward sustainable 
energy systems, particularly in sun-rich regions where precise solar forecasting is critical for climate resilience 
and energy security.

Fig. 10.  Comparison of prediction errors for different SR models based on various metrics.

 

FFBP CFBP SVR CCN-LSTM

MSE 0.2403 0.0957 0.0115 0.0069

RMSE 0.4902 0.3093 0.1073 0.0833

MAPE 6.7293 4.0022 1.7752 1.1807

MAE 0.3865 0.2355 0.0862 0.0679

nRMSE 0.0793 0.0501 0.0174 0.0135

Table 3.  Error Metrics for CNN-LSTM, SVR, CFBP, and FFBP Models.
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Data availability
The data used and/or analyzed during the current study are available from co-author Dr. Abdelaziz Rabehi 
(rab_ehi@hotmail.fr) on reasonable request.
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