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This paper introduces the Efficient Metaheuristic BitTorrent (EM-BT) algorithm, aimed at optimizing
the placement and sizing of photovoltaic renewable energy sources (PVRES) and capacitor banks

(CBs) in electric distribution networks. The main goal is to minimize energy losses and enhance voltage
stability over 24 h, taking into account varying load profiles, solar irradiance, and temperature effects.
The algorithm is rigorously tested on standard distribution networks, including the IEEE 33, IEEE

69, and ZB-ALG-Hassi Sida 157-bus systems. The results reveal that EM-BT outperforms established
methods like Particle Swarm Optimization (PSO), Grey Wolf Optimizer (GWO), and Whale Optimization
Algorithm (WOA), demonstrating its effectiveness in reducing energy losses and maintaining stable
voltage profiles. By effectively combining PVRES and CBs, this research highlights a robust approach to
enhancing both technical performance and operational reliability in distribution systems. Additionally,
the consideration of temperature effects on PVRES efficiency adds depth to the study, makingita
valuable contribution to the field of power system optimization.

Keywords Efficient Metaheuristic BitTorrent (EM-BT) algorithm, Photovoltaic renewable energy sources
(PVRES), Capacitor banks (CBs), Energy loss minimization, Particle Swarm Optimization (PSO), Grey Wolf
Optimizer (GWO), Whale Optimization Algorithm (WOA), Operational reliability

Motivation

The increasing complexity of modern life and the depletion of fossil fuel reserves have driven a substantial
rise in global energy demand, leading to more frequent power losses and voltage fluctuations in electrical
distribution networks. This growing demand underscores the need to integrate distributed generation (DG)
units, especially those based on renewable energy sources, into radial distribution systems (RDS)!. Unlike
traditional power networks, where electricity flows in a single direction from the grid to consumers, DG units
introduce bidirectional power flows, presenting both challenges and opportunities. DGs can offer numerous
benefits when integrated effectively, including reduced power losses, improved voltage stability, enhanced
reliability, energy savings, and delayed infrastructure upgrades. However, realizing these advantages depends
on precisely optimizing DG placement and sizing. Inadequate planning can increase losses, destabilize voltage
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profiles, and raise operational costs, making strategic DG deployment essential for improving network efficiency
and performance.

DG units are decentralized power sources connected to radial distribution systems and can be broadly
categorized into four types. The first type comprises technologies such as photovoltaic cells and fuel cells,
which generate only active power (P). The second category includes devices like capacitors and synchronous
compensators, which produce only reactive power (Q). The third type features DG units such as synchronous
machines and voltage source converters (VSCs) that can supply both active and reactive power (P & Q). Finally,
the fourth type consists of induction generators, commonly used in wind farms, which provide active power (P)
but require reactive power (Q) for operation?.

Incorporating capacitor banks (CBs) into distribution systems enables reactive power generation, improving
voltage at load buses and reducing power losses, which in turn lessens the demand for reactive power from the
main grid®. Fixed-switched capacitor banks can also stabilize voltage fluctuations caused by certain DGs types*.
The combined use of DGs and CBs is expected to reduce distribution losses further, enhance voltage profiles,
and boost overall system performance. Effective optimization tools are crucial for determining the optimal
placement and sizing of DGs and CBs to address voltage deviation issues and maximize these benefits.

Advancements in optimization techniques have made it possible to harness the full potential of distributed
generators. Metaheuristic algorithms, in particular, have gained popularity due to their ability to tackle
complex optimization problems more effectively than conventional methods. Extensive research has focused
on minimizing system losses by optimizing the capacity and location of DG units, with various methods and
strategies being developed to improve the performance of electrical networks.

Related work

For instance, the research in’ introduces a hybrid method combining artificial ecosystem optimization with
an incremental conductance-based maximum power point tracking (MPPT) technique to enhance efficiency
in tracking the maximum power point (MPP) in photovoltaic systems. Simulations conducted under varying
environmental conditions demonstrate that this approach stabilizes DC voltage while complying with IEEE
standards for total harmonic distortion (THD). Similarly, Jordehi® proposes an improved Particle Swarm
Optimization (PSO) method using time-varying acceleration coefficients (TVACPSO) to optimize parameter
estimation in photovoltaic cells and modules. By dynamically adjusting these coefficients, the method prevents
premature convergence and balances exploration and exploitation. The TVACPSO technique outperforms
conventional PSO and other optimization approaches in parameter estimation tasks.

Another study, Rezaee Jordehi’, focuses on photovoltaic systems with high power output, where precise
parameter estimation is critical. Though PSO is widely used, it often suffers from premature convergence,
reducing efficiency. To address this, the study presents an Enhanced Leader PSO (ELPSO), which surpasses
standard PSO and other optimization techniques. In®, a Quadratic Binary Particle Swarm Optimization
(QBPSO) method is proposed for optimizing the scheduling of shiftable appliances in smart homes. Tested in
a smart home environment with 10 appliances and 264 decision variables, this method significantly reduces
electricity costs while maintaining user comfort, outperforming other binary PSO variants.

A further study, Sambhi et al.’, evaluates a hybrid power plant combining solar PV and diesel generators
for a campus, analyzing various battery storage configurations and assessing both performance and economic
factors to identify the most efficient solution. This research emphasizes the hybrid system’s cost-effectiveness and
environmental benefits across different scenarios. In'?, recent work introduces a model for the joint allocation of
capacitor banks and distributed generation (DG), accounting for uncertainties in DG units. Similarly, Das et al.!!
presents a method for sustainable operation of distribution networks aimed at reducing energy losses, improving
voltage profiles, and decreasing grid dependency.

In'2, a hybrid optimization technique combines Weight Improved Particle Swarm Optimization with the
Gravitational Search Algorithm to optimize the placement of distributed generators and capacitors, maximizing
cost-efficiency. The study in'® introduces an improved Grey Wolf Optimizer for allocating distributed generators,
capacitor banks, and voltage regulators to minimize power losses and enhance voltage stability. Meanwhile,
Milovanovi¢ et al.'* presents a hybrid metaheuristic algorithm for optimal placement and sizing of distributed
generation units and shunt capacitors.

In'®, a hybrid optimization strategy combining the Enhanced Grey Wolf Optimizer with Particle Swarm
Optimization (AREP-EGWO-PSO) is proposed for optimizing the sizing and placement of distributed
generation units and capacitor banks, leveraging renewable energy resources. Saonerkar and Bagde!® introduce
a genetic algorithm for optimal placement and sizing of combined distributed generation units and capacitor
banks. Jannat and Savic!” propose a method that incorporates renewable energy uncertainties into the placement
and sizing of DGs. Sayyid Mohssen Sajjadi et al.!® employ a memetic algorithm using the voltage stability index
to optimize the size and location of distributed generators and capacitors, achieving technical, economic, and
environmental goals. Moradi et al.!®?° propose using a combination of genetic algorithms and particle swarm
optimization (GA/PSO), as well as imperialist competitive algorithms and genetic algorithms (ICA/GA), to
address multi-objective optimization problems considering both technical and economic factors. Similarly, S.
Gopiya Naik et al.?! utilize an analytical method based on the loss sensitivity factor for optimal placement and
sizing of distributed generation units and capacitors to minimize losses.

In?223, the Firefly Algorithm and Backtracking Search Algorithm are highlighted as nature-inspired
evolutionary techniques. In?*, a comparison is made between these algorithms and others, such as genetic
algorithms, particle swarm optimization (GA/PSO), imperialist competitive algorithms, and genetic algorithms
(ICA/GA), as well as analytical methods from?*, for optimizing the placement of distributed generators and
fixed capacitor banks, reducing power losses and improving voltage profiles. In*’, Mohamed et al. apply the Loss
Sensitivity Factor (LSF) method to determine optimal locations for distributed generators and capacitor banks,
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algorithm for the optimal placement of distributed generators and capacitor banks in distribution networks.
In?8, the Intersect Mutation Differential Evolution Algorithm is introduced to allocate distributed generators and
circuit breakers simultaneously while ensuring current flow limits are not exceeded. Partha et al.? propose an
evolutionary approach based on decomposition verification for allocating distributed generators and capacitor
banks, focusing on reducing power loss and enhancing system reliability.

Recent developments in power system optimization highlight the inadequacy of traditional single-objective
and multi-objective optimal power flow (OPF) solutions to meet the complex demands of modern electricity
networks. The many-objective optimal power flow (MaOPF) methods have gained attention as a critical research
area. One notable study proposed the many-objective marine predators algorithm (MaMPA) to effectively
address MaOPF problems, showing superior performance in minimizing operational costs and optimizing
objectives such as emissions and voltage stability in IEEE 30- and 118-bus systems®.

Another study introduced the Two-Archive Harris Hawk Optimization (TwoArchHHO) algorithm for
many-objective optimal power flow (MaOOPF) problems, enhancing searchability and performance through
two-archive concepts, resulting in improved solutions across various IEEE standard systems>'.

The role of battery energy storage systems (BESS) in optimizing energy utilization in distribution networks
has also been emphasized. A study using the crayfish optimization algorithm (COA) for optimal sizing and
placement of multiple BESSs demonstrated significant improvements in voltage regulation and power loss
mitigation compared to single BESS installations2.

Additionally, the Energy Valley Optimizer (EVO) algorithm has been proposed for optimizing distributed
generation (DG) allocation, focusing on photovoltaic (PV) and wind turbine (WT) technologies. Evaluated
using the IEEE 33-bus test system, the EVO algorithm effectively minimizes power and energy losses compared
to other recent optimization techniques?.

Finally, Dixit et al.** presents a Gbest-guided Artificial Bee Colony algorithm for optimizing the placement
of distributed generation units and capacitor banks in networks with variable loads. Adel et al.*> propose a water
cycle algorithm to optimize the allocation of DGs and capacitor banks for techno-economic and environmental
improvements. Similarly, Sambaiah et al.*® employs the Salp Swarm Algorithm, inspired by the collective
movement of salps, to optimize the placement of distributed generators and capacitors with a focus on technical,
economic, and environmental objectives. Lastly, Pal et al.*” introduces a modified search algorithm integrated
with several soft computing techniques for optimizing the placement and sizing of distributed generators in
distribution networks, with comparisons to recent studies.

A summary of different methods for optimal allocation of distributed generators (DGs) and capacitor banks
(CBs) in distribution systems is provided in Table 1.

Contribution

This study introduces the Efficient Metaheuristic BitTorrent (EM-BT) algorithm, designed to minimize daily
energy losses and voltage fluctuations while accounting for varying load profiles over a 24-h period. The
algorithm has been tested on multiple distribution networks, including the IEEE 33, 69, and ZB-ALG-Hassi Sida

Impact of Impact of
Authors Publication | temperature | temperature
(References) Objective(s) Approach Advantages CBs/DGs Test Network year on network | on PV
Hussein et al.*® | Minimization of total losses NPO Technical CBs and DGs | 33 bus and 69 bus 2021 X X
Reducing active power losses,
optimizing the voltage deviation Technical
Chandrasekaran | index (VDI), lowering the overall | b ovvy psy | Economic and | CBsand DGs | 33 busand 69 bus | 2021 X X
etal. cost of electrical energy, and .
AR L Environmental
minimizing emissions from power
generation sources
Abdel et al.?® Reduction of Power Loss PO Technical CBs and DGs | 33 bus and 69 bus 2021 X X
Saklgahagya et Min‘im‘%zing System Costs gnd Line | \vo Technicgl, CBs and DGs | 85 bus and 185 bus | 2022 X X
al. Losses in Active and Reactive Power Economic
Vimal et al.#! Reduction of Power Loss CFA Technical CBsand DGs | 12 bus and 33bus, 85 2022 X X
bus, and 118 bus
Mohamed et Minimizing active losses 1GJO Technical CBs and DGs | 69 bus and 118 bus 2023 X X
a2 g
33-bus radial
Jay et al.*#® Reduction of Power Loss GA Technical CBs and DGs | network, Sallaghari- | 2024 X X
Thimi 11 kV feeder
Fettah et al.* Minimizing the total cost of energy | EVO Technical, CBs and DGs | ZB-ALG-Hassi Sida 2024 X X
Economic 157 buses
33 bus and 69 bus
This paper Energy Loss Minimization EM-BT Technical CBsand DGs | and ZB-ALG-Hassi | - v v
Sida 157 buses

Table 1. Overview of different techniques for optimal placement of distributed generators (DGs) and capacitor
banks (CBs) in distribution networks (“v” signifies that the method is being considered, while “X” signifies it

is not).
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157-bus systems, optimizing the placement of photovoltaic renewable energy sources (PVRES) and capacitor
banks (CBs) for improved overall performance.

A key innovation in this research is the consideration of temperature effects on PVRES efficiency, which
is often overlooked in similar studies. This comprehensive approach integrates both temperature and solar
irradiance, providing a more robust solution for distribution network optimization. Temperature variations can
significantly impact photovoltaic efficiency, material conductivity, and network reliability, making it essential to
address these factors.

Comparative tests against methods such as Particle Swarm Optimization (PSO), Grey Wolf Optimizer (GWO),
and Whale Optimization Algorithm (WOA) demonstrate that EM-BT outperforms these techniques in reducing
energy losses and voltage fluctuations. While increasing the deployment of PVRES and CBs further reduces
losses, this improvement comes with higher economic costs. The subsequent sections detail the mathematical
formulation of the EM-BT algorithm (Section “Model mathematics of EM-BT”), modeling for PVRES allocation
(Section “Optimal placement and size of capacitor banks (CB) and photovoltaic renewable energy sources
(PVRES) for supportive services in distribution networks”), and a thorough analysis of simulation results under
varying load conditions (Section “Simulation and results”). The study concludes in Section “Conclusion’.

Model mathematics of EM-BT
In 2022, the Efficient Metaheuristic BitTorrent (EM-BT) algorithm was introduced as a new optimization
method, inspired by the BitTorrent protocol, widely used for peer-to-peer file sharing. This protocol enables users
to exchange file segments directly, alleviating the burden on central servers. The EM-BT algorithm leverages this
concept by encouraging interaction and information sharing among candidate solutions, ultimately improving
overall performance®. What distinguishes EM-BT is its capacity to provide innovative solutions across diverse
domains, even in fields where many other metaheuristic techniques have been applied. This underscores the
algorithm’s versatility and efficiency in addressing problems that traditional optimization methods may not solve
as effectively.

Similar to other metaheuristic techniques, the EM-BT approach begins by generating a random population
of candidate solutions.

& = Brow + (Bup — BLow) X Tand (1)

where Brow and By represent the maximum and minimum boundaries of the search space, and rand signifies
a random number uniformly distributed within the range [0, 1].

The matrix containing all candidate solutions can be expressed as follows:

r1,1 T1,2 Z1,D
T2,1 T2,2 T2,D

X = . . . . (2)
TN,1 TN,2 ITN,D

N and D indicate the population size and the problem’s dimension respectively.
This population is then evaluated using a fitness function, to measure the abilities of each solution, comparing
them at each iteration, and selecting the best one.

F=] f(x1) f(z2) f(x:) fan) ] (3)

F is a vector that stores the fitness values acquired from the considered fitness function, denoted as f.

In the BitTorrent protocol, users are regrouped into three levels: seed, peers, and new peers. Users within the
same level download certain file pieces from those in the higher level while exchanging the remaining pieces
among themselves.

Using the same concept of the BitTorrent protocol, and based on the fitness values, the EM-BT algorithm
divides the population into three groups: seed, peers, and new-peers. The seed represents the best solution
discovered thus far, while the peers consist of the first, second, third, and fourth best solutions. The remaining
individuals in the population form the new peers group.

The candidate solutions are updated at each iteration as follows:

(a) The seed xs, representing the optimal global solution, is updated in each iteration utilizing the following
equation

xiter+1 — argmin (f (371)) (4)
i=1:N

(b) The peers, which denote the solutions in the second level, download file pieces by communicating with the
seed xs and among themselves (peer-to-peer communication). Thus, the peer solutions are updated in two

phases using the following equations:

« Communication with the seed
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iter+1 __ iter __ ( iter __ 'L:tc'ir) .
mi%j T T § —axr X (z] x5 5 if rand < 0.5 )
x; ;T+ = itfr Otherwise

,

Each peer solution xﬁf‘?’"“ is updated using (5).
The EM-BT flowchart is illustrated in Fig. 1.
Where, the subscripts ¢ and j denote the solution and dimension indices, respectively. ¢ = 1,2, 3,4 and
j=1,2,...,D.
r and rand are two random numbers taken uniformly from [0, 1].
The parameter o decreases from 2 to 0, enabling the algorithm to transition from exploration to exploita-
tion.
This progression is controlled using the following equation:

iter

_o_wer (6)
MazxlIter

o=

To introduce a random aspect into the EM-BT approach, the candidate solution are updated, if a random
number, rand, was less than or equal to 0.5; otherwise, it remained unchanged.
» Communication peer-to-peer

iter+1 __ iter __ iter ___iter .

Tig oy ks O xrx (2§ — 2i") if rand < 0.5 7)
wter — wter o
e =xz; Otherwise

iter
VA

For each peer solution z another peer z" is selected, then it is updated using (4).

For each new peer,
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Fig. 1. Flowchart of EM-BT.
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k=1,2,3,4, withk # i

(c) New-peers communicate with the peers and with other New peers to share information, they update their

positions, in two phases, using the following equations:

« Communication with the peers

ot = gt —axor x (aifm - allST) if rand < 0.5 ®)
aitertt = giter Otherwise
For each new peer xit;’, a peer solution xl‘t;’ is selected, wherei = 5,6,7,..., N,and assumes values within
the range!™*
o Communication with other new peers
iter+1 __  iter _ iter __ .iter -
xiéj T x,;] axXTrX (xnd x5 ) ifrand < 0.5 )
a T = e Otherwise
For each new peer solution z’", another new peer z;;" It is selected from its neighbours and then updat-

ed using (9), where. n = 5,6,7, ..., N,withn # i.

In the EM-BT algorithm, new solutions replace older ones if their fitness values show improvement. This
updating process continues through multiple iterations until a specified stopping condition is met. Each
optimization algorithm operates with unique parameters that impact its overall performance. For example,
EM-BT incorporates a parameter @’ that controls the electromagnetism force and is tied to temperature. In
Particle Swarm Optimization (PSO), parameters such as cognitive and social coefficients and inertia weight
guide the algorithm’s behaviour. Similarly, the Grey Wolf Optimizer (GWO) relies on parameters that de-
fine the positions of alpha, beta, and delta search agents, while the Whale Optimization Algorithm (WOA)
uses parameters that balance exploration and exploitation rates.

The flowchart of the whole implementation process

Step 1: Input data preparation

« Collection of solar irradiance, temperature, and load profiles.

Step 2: Initialization

« Start the EM-BT algorithm and generate candidate solutions for PVRES and CBs.
Step 3: Iterative optimization process

« Evaluate candidate solutions.
« Group solutions into Seed, Peers, and New Peers.
« Update solutions through BitTorrent-inspired interactions.

Step 4: Final placement and sizing
« Identify the optimal locations and sizes for PVRES and CBs.
Step 5 : Performance evaluation

o Assess energy losses and voltage profiles.
« Compare the EM-BT algorithm’s performance with other methods, such as PSO, GWO, and WOA.

Optimal placement and size of capacitor banks (CB) and photovoltaic renewable

energy sources (PVRES) for supportive services in distribution networks

Modeling techniques for photovoltaic renewable energy sources

Power output from PVRES modules is highly influenced by local weather conditions, especially solar radiation and
ambient temperature®. The geographical location largely determines these conditions. Consequently, assessing
solar radiation levels in a particular region is essential for optimizing the efficiency of PVRES panels. Typically,
historical data is used to estimate hourly solar radiation and daily temperature fluctuations. This information is

then divided into various phases, each defined by specific solar radiation and temperature thresholds

47,48

A practical model is employed to enhance the power output of photovoltaic modules®, focusing on
maximizing efficiency under varying environmental conditions. This model takes into account factors such as
solar irradiance, temperature, and module characteristics to ensure optimal performance of the PV system:

PPvfma,:c =FF- ([sc .

Gref

G In(PL-G)  Tjres
) . (VOC. In(Pr-Grey) . T; ) (10)
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The highest power output that a photovoltaic (PV) system can achieve is represented by PPv-max, while Isc
refers to the short-circuit current produced by the system. Solar irradiance, or sunlight intensity, at any specific
moment, is denoted by Gref, which is the standard reference value for irradiance. The voltage of the PV system
when open-circuited is expressed as Voc. Additionally, Tjref indicates the reference junction temperature of the
PV system, and Tj represents the junction temperature at a particular time.
The following formula is used to calculate the constant coeflicient PI.
ISC

P = o (11)

The filling factor (FF) can be expressed as:

b, Vinppl.
FF = pvmaz __ Vmpplmpp b
Vo(: . Isc Voclsc ( )

The voltage at the Maximum Power Point (MPP) of the photovoltaic system is represented by Vmpp, while Impp
denotes the current at the MPP of the system.

Optimal allocation and size of capacitor banks (CB) and photovoltaic renewable energy
sources (PVRES) for auxiliary services: constraints and objectives

In the allocation of Photovoltaic Renewable Energy Sources (PVRES) and capacitor banks (CBs) for auxiliary
services in distribution systems, the primary objective is to minimize daily energy losses. This objective is
mathematically expressed as:

24 N
Eloss = Z Z Iy (h)2 - Rpr (13)
h=1 br=1

E,  represents the total energy loss per day.

In this context, the number of distribution branches is indicated as Nbr, while the current flowing through
each branch is represented by Ibr, and Rbr denotes the resistance of each branch. The aim of minimizing these
parameters is encapsulated in a single-objective model, Fobj, as outlined in Eq. (14).

Eloss after DG

Fob A
J E
loss before DG

(14)

Ensuring that the real and reactive power injections from the Photovoltaic Renewable Energy Systems (PVRES)
and Capacitor Banks (CB) remain within their predefined operational limits is crucial. These limits are specified
as PPV RES) maz for real power injection from PVRES and Qcb j_max for reactive power injection from
the CB. Adherence to these constraints at all times is essential for maintaining system stability, reliability, and
optimal performance, thereby preventing risks of overloading or imbalances within the network.

0 < PPVRESKk < PPVRESy maw k=1,....,nPV (15)

0 < Qety < Qety paw §=1,....,mch (16)

PPVRES denotes the real power supplied to the grid by photovoltaic renewable energy sources (PVRES),
whereas QCB indicates the reactive power contributed by capacitor banks (CB)*. Additionally, it is essential
to maintain the voltage at each distribution node and the current in all distribution branches within designated
safe limits at all times. These precautions are vital for ensuring the power distribution network’s overall stability,
efficiency, and safety®!.

‘/v’VVL77ILZ‘7L < ‘/NL < ‘/'IIL77VLIZIE m = 17 RN TLB (17)

Iy, < ‘Ib"‘iirn,am 7= 1,....777,1)7‘ (]8)

In this context, m expressed the voltage at bus m, with Vi, 1min and Vi, maz denoting the respective minimum
and maximum voltage limits for that particular bus. These limits are typically set within a 10% tolerance range
to ensure the stability of the entire network. Furthermore, Iy, ,,,. defines the maximum allowable thermal
capacity of the branch, which is a crucial constraint for preventing overheating or overloading of network
components. These operational constraints must be consistently satisfied across all hours, nodes, and branches
to maintain reliable and secure power distribution.

Additionally, the photovoltaic (PVs) penetration threshold is regulated using the coefficient K p>2 It ensures

that the total installed capacity of PV systems, ( > vak> , equals 50% of the system’s total active power
kenPV
demand, Pp,,, . This constraint helps balance renewable energy integration with system stability.

> Pev=Kp: ) Pp, (19)

kenPV menB
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The inequality constraints associated with the control variables, as described in Egs. (15) and (16), are
automatically managed by the EM-BT mechanism. However, the inequality constraints in Eqs. (17) and (19)
require special attention.

Model of distribution networks
Generally, the resistance of an AC line is determined by:

Rz’f’o-l (20)

r, represents the linear resistance in [Q2/km], and I denotes the line length in meters. In this study, we adjust
the resistance values for all network buses (33, 69, and 157) to reflect real conditions by incorporating 24 daily
temperature values, as follows:

v = R[1+ a25 (t;—25)] (1)

The value of R,; indicates the resistance at the i-th hour, with i ranging from 1 to 24 throughout the day. The
resistance R corresponds to the material’s resistance at a standard reference temperature, typically 25 °C,
measured in ohms [Q)]. The parameter a25 represents the temperature coeflicient of resistance at this reference
temperature, while t denotes the temperature (in Celsius) at which the resistance, adjusted for temperature, is
calculated.

Simulation and results
The EM-BT algorithm has been utilized to reduce energy losses by accounting for fluctuations in PVRES output,
capacitor bank output, and daily load variations. This approach has been applied to three different distribution
Networks: IEEE 33, IEEE 69, and ALG-AB-Hassi Sida, which comprises 157 buses. For the IEEE 33 system, three
and six PVRES units were allocated alongside nine capacitor banks. In contrast, due to the larger size of the IEEE
69 and ZB-ALG-Hassi Sida systems, more PVRES units were deployed. The IEEE 69 system received five and
ten PVRES units along with eighteen capacitor banks, whereas the ZB-ALG-Hassi Sida system was allocated ten
and twenty PVRES units and twenty-five capacitor banks. Each system was assessed with various profiles for
capacitor banks, PVRES, and load over a 24-h timeframe. The input data (detailed in Table 2) and the results for
each testing system are elaborated upon in the following sections.

Three scenarios were evaluated for all networks (IEEE 33, IEEE 69, and ZB-ALG-Hassi Sida 157), as described
below:

o Scenario 1 A load flow analysis was performed for each hour of loading, accounting for temperature effects
across all networks.

o Scenario 2 The proposed EM-BT algorithm was compared to Particle Swarm Optimization (PSO), Grey Wolf
Optimization (GWO), and the Whale Optimization Algorithm (WOA) for the placement of PVRES and ca-
pacitor banks. The objective was to minimize the function defined in Eq. (14).

o Scenario 3 A similar comparison was conducted, focusing exclusively on PVRES placement. This scenario
used twice as many PVRES units as Scenario 2 while keeping the number of capacitor banks unchanged, to
further reduce the objective function.

In both scenarios involving optimization, the EM-BT algorithm was executed for 100 iterations using 30 search
agents. For Scenario 1, voltage adjustments were applied to ensure that node voltages remained within 10% of
the nominal value. In all scenarios, each algorithm was tested over 10 iterations to standardize the number of
function evaluations.

The EM-BT algorithm’s performance was tested on three networks: IEEE 33, IEEE 69, and ZB-ALG-Hassi
Sida 157. The IEEE 33 network consists of 32 branches and 33 nodes, IEEE 69 has 68 branches and 69 nodes, and
the ZB-ALG-Hassi Sida system includes 156 branches and 157 nodes. Detailed information about the branches
and nodes in these networks is available in the literature®»*!. Diagrams of these systems, each operating at a
nominal voltage of 12.66 kV, are shown in Fig. 2.

The LGEB laboratory located at Mohamed Khider University in Biskra, Algeria, offers extensive statistical
insights into the variations of photovoltaic renewable energy sources (PVRES) influenced by solar irradiance
and temperature across the IEEE 33, IEEE 69, and ZB-ALG-Hassi Sida 157 networks.

Figure 3a to ¢ display the daily average power generation fluctuations of PVRES across the 33, 69, and 157
bus networks, effectively illustrating the impact of solar irradiance variations throughout the day. These figures
highlight the influence of sunlight intensity on PVRES output, with power generation peaking during midday
and diminishing in the early morning and late afternoon. Meanwhile, Fig. 4 presents the average PVRES output

Base case 1EEE 33 IEEE 69 | ZB-ALG-Hassi Sida 157
Energy losses (kWh) 3.567e+03 | 3.797e+03 | 1.799e+04

Peak bus voltage (pu) 1 1 1

Lowest bus voltage (pu) over 12 h | 0.903 0.909 0.890

Table 2. Evaluation of daily energy loss across various distribution systems with peak and minimum bus
voltage levels.

Scientific Reports |

(2025) 15:2670 | https://doi.org/10.1038/s41598-025-85484-3 nature portfolio


http://www.nature.com/scientificreports

www.nature.com/scientificreports/

23 M4 25

/ 26 27 28 29 30 31 N X
@II |1 |

1 2\3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

19 20 21 22

(a) IEEE33

37 38 39 43 44 45

1516 17 18 19 20 21 L 27

56 57 58 59 60 61 62 63 64 65

28 29 30 31 32 33 34 35

(b) IEEE 69
41
4= az
49 47 34 1L3_|
—=— |
4 -'{L—|_3‘9 28| 37 36 s
I l—_l—l T 'J—l —4-5 s0 53
42'—r' ssl 45{3‘:‘]_4‘3 J——|
46 ———ES
54 ' 51 52
se e sS se
s9 s7 l_%i_—|
&3 62 61 &0 10
—t— - el I s
66 1_1 -—12
e7| ssi —4—1s a0

[—2% 70 71 72
17 107 108 109

114 |11 12418
115 - 110 111
123 122 121120119 118 =20
I } o T
(21 198 137 138 139
| == r—L' |—L T L
=23

[ | - ]
I I { T rer | - - I 143
13s | 1=a J 152 '_'I“:;S

|- z6

T
133 1sa I—_]_27 _}__‘_1;
1ss '_~|—
|

|— 28

1=

(¢) ZB-ALG-Hassi Sida 157

Fig. 2. Schematic representation of the three networks.

variations over a 24-h timeframe, incorporating the combined effects of both solar irradiance and temperature
fluctuations. This figure emphasizes the compounded impact of environmental factors on PVRES efficiency,
with temperature increases reducing output during peak irradiance hours. Furthermore, Fig. 5 provides a
comprehensive overview of load variations across all three networks, showcasing the demand fluctuations that
occur alongside generation variations. Together, these figures underscore the dynamic interaction between
power generation and demand, as well as the importance of adaptive strategies for optimizing PVRES placement
and operation in response to these environmental and load-related variations.
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Fig. 3. Yearly daily average PVRES variations due to irradiance for the three networks.

The influence of temperature on photovoltaic modules, as shown in Figs. 3 and 4, demonstrates a noticeable
reduction in power output from PVRES. For the IEEE 33 system, the output drops from 2100 kW at 50%
efficiency to 1,155 kW at 27.5% efficiency. In the IEEE 69 system, the output decreases from 1925 kW at 50%
efficiency to 1,058 kW at 26% efficiency. For the ZB-ALG-Hassi Sida 157 system, power output falls from 13,650
kW at 50% efficiency to 7,507.5 kW at 27.5% efficiency.

Figure 5a-c shows that peak load demand typically occurs around 12:00 p.m. and lasts for 4 h for both the
IEEE 33 and IEEE 69 systems, fully meeting 100% of the demand. Conversely, Fig. 5c indicates that the peak
demand for the ZB-ALG-Hassi Sida 157 system occurs around 6:00 p.m., extending for 3 h, during which the
system also fulfils 100% of the load.

Scenario 1
In this case, load flow estimates are performed hourly, taking into account the effects of temperature on demand.
Figure 6a—c show the voltage profiles for the IEEE 33, IEEE 69, and ZB-ALG-Hassi Sida 157 networks across

all distribution nodes, highlighting distinct characteristics for each loading hour. Notably, these voltage profiles
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Fig. 4. Yearly daily average PVRES fluctuations considering irradiance and temperature effects across the three
networks.

remain below the baseline lower bound. During peak consumption at hour 14, the ZB-ALG-Hassi Sida 157
network experiences a minimum voltage of 0.87 pu, while the IEEE 33 and IEEE 69 networks reach a minimum
of 0.89 pu. Additionally, Table 3 provides a detailed overview of daily energy loss, underscoring the impact of
temperature on network performance.

The results in Fig. 6 and Table 3 reveal that the energy losses for the ZB-ALG-Hassi Sida 157, IEEE 69, and
IEEE 33 distribution networks are 19,367 kWh, 4,085.7 kWh, and 3,813 kWh, respectively. These observed losses
exceed the base case estimates of 17,995 kWh for the ZB-ALG-Hassi Sida 157 network, 3797 kWh for the IEEE
69 network, and 3567.7 kWh for the IEEE 33 network. Consequently, this translates to an increase in energy
losses of 7.62% for the ZB-ALG-Hassi Sida 157 network, 7.60% for the IEEE 69 network, and 6.88% for the
IEEE 33 network. The higher energy losses reflect the effects of factors such as temperature, load variations, and
network structure on power efficiency, particularly under less-than-ideal conditions. These findings underscore
the necessity for optimizing network configurations, the placement of PVRES and capacitor banks, and the
selection of loss-reducing measures to mitigate inefficiencies and improve overall performance in each network

scenario.
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Fig. 5. Yearly daily average variations for the three distribution Networks.

Senario 2

In this case, the EM-BT approach is compared to the PSO, GWO, and WOA methods, aiming to minimize the
objective function defined in Eq. 14. Various allocations of PVRES and capacitor banks (CBs) were considered
during the evaluation process. Table 4 summarizes the energy losses, voltage variations, and reduction rates
for the IEEE 33, IEEE 69, and ZB-ALG-Hassi Sida 157 networks. The results indicate that the EM-BT method
significantly reduces energy losses: from 3,831.3 kWh/day to 1,951.5 kWh/day for the IEEE 33 network, from
4,085.7 kWh/day to 1,764.7 kWh/day for the IEEE 69 network, and from 19,367 kWh/day to 8,141.4 kWh/day
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Fig. 6. Hourly voltage profiles over a 24-hour period for each of the three networks in the initial scenario.

for the ZB-ALG-Hassi Sida 157 network. Additionally, voltage magnitudes improve across all buses, with notable
enhancement at the weakest bus.

Figure 7a—c illustrate the convergence behaviors of the optimization techniques (EM-BT, PSO, GWO, and
WOA) for the IEEE 33, IEEE 69, and ZB-ALG-Hassi Sida 157 networks. The EM-BT approach demonstrates
excellent convergence properties, consistently achieving optimal PVRES and CB configurations more efficiently.
For the IEEE 33 network, as depicted in Fig. 7a, EM-BT converges faster and more reliably than the other
methods. Similarly, Fig. 7b shows that EM-BT performs exceptionally well in terms of speed and stability for
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IEEE 33 | IEEE 69 | ALG-AB-Hassi Sida 157
Energy Loss .e+03 (kWh) 3.831 4.085 19.367

Peak bus voltage (pu) 1 1 1
Lowest bus voltage (pu)/14h | 0.892 0.896 0.8784
Energy Loss rising (%) 6.88 7.06 7.08

Table 3. Daily energy loss for all distribution networks considering the impact of temperature.

the IEEE 69 network. For the ZB-ALG-Hassi Sida 157 network, Fig. 7c highlights the superior convergence of
EM-BT, achieving minimal energy losses. Overall, Fig. 7 confirms that the EM-BT approach excels in delivering
rapid and consistent convergence across all networks.

Scenario 3

In this analysis, we evaluate the performance of the EM-BT algorithm in comparison with three alternative
optimization techniques: Particle Swarm Optimization (PSO), Grey Wolf Optimizer (GWO), and Whale
Optimization Algorithm (WOA). Various configurations were tested, incorporating six, ten, and twenty
allocations of Photovoltaic Renewable Energy Sources (PVRES) along with multiple capacitor banks. The
primary objective was to minimize the function defined in Eq. 14.

Table 5 summarizes the results, highlighting reductions in voltage deviations, energy losses, and energy loss
percentages for the IEEE 33, IEEE 69, and ZB-ALG-Hassi Sida 157 networks. For the IEEE 33 network, the EM-
BT algorithm reduces energy losses by 57.60%, lowering them from 3,831.3 kWh/day to 1,624.4 kWh/day, while
also improving the voltage at the weakest bus from 0.89 pu to 0.93 pu. Similarly, in the IEEE 69 network, EM-BT
achieves a 65.44% reduction in energy losses, decreasing them from 4,085.7 kWh/day to 1,412 kWh/day, and
raising the voltage at the weakest bus from 0.89 pu to 0.92 pu. In the ZB-ALG-Hassi Sida 157 network, EM-BT
results in a 63.17% reduction in energy losses.

Figure 8a-c illustrate the convergence behaviours of EM-BT, PSO, GWO, and WOA across the three
networks, with Fig. 8b specifically showing an enhanced voltage profile under Scenario 3. The EM-BT algorithm
demonstrates superior convergence properties across all networks, affirming its effectiveness in optimally sizing
and placing capacitor banks and PVRES to minimize energy losses, as also seen in Scenario 2 (Fig. 7).

Figure 9a-c illustrate the voltage characteristics for the IEEE 33, IEEE 69, and ZB-ALG-Hassi Sida 157
networks, each exhibiting distinct operational features. In particular, Fig. 9b demonstrates marked voltage
stability improvements in the IEEE 69 network achieved through the EM-BT algorithm. Unlike in the baseline
scenario, all voltage levels in this network remain above the minimum acceptable threshold, even under
increased load conditions. During peak demand, both the IEEE 69 and ZB-ALG-Hassi Sida 157 networks
experience a minimum voltage drop to 0.92 per unit (pu), while the IEEE 33 network maintains a slightly higher
minimum voltage of 0.93 pu. These results underscore the effectiveness of the EM-BT approach in optimizing
the placement and sizing of PVRES and capacitor banks, which not only mitigates voltage drops but also
preserves voltage stability across all nodes. Consequently, this optimization significantly enhances power supply
reliability, particularly during high consumption periods, ensuring robust operational resilience in diverse
network environments.

Figure 10a—c illustrate the percentage reduction in energy losses achieved across the second and third
optimization scenarios for the IEEE 33, IEEE 69, and ZB-ALG-Hassi Sida 157 systems. The results demonstrate
a clear trend: as the number of PVRES units integrated into the network increases, the reduction in energy
losses becomes more pronounced. This correlation suggests that a higher density of distributed generation from
PVRES enhances the network’s capacity to meet local demand directly, thereby reducing the need for energy
transmission over longer distances and minimizing associated losses. Additionally, the strategic placement
and sizing of PVRES units, as guided by the EM-BT algorithm, ensure that these reductions are maximized
by mitigating power flow imbalances and optimizing voltage profiles. This outcome underscores the potential
for distributed PVRES deployment to significantly improve energy efficiency and reduce operational costs in
electrical distribution systems.

Conclusion

This study introduces the EM-BT optimization method, designed for the strategic placement and sizing of
Photovoltaic Renewable Energy Sources (PVRES) and Capacitor Banks (CB) within distribution systems. The
main goal of EM-BT is to minimize energy losses while considering various load scenarios over a 24-h period,
along with temperature fluctuations. Our results indicate that EM-BT significantly outperforms traditional
optimization methods, such as the Grey Wolf Optimizer (GWO), Particle Swarm Optimization (PSO), and
Whale Optimization Algorithm (WOA), particularly in reducing energy losses while adhering to operational
constraints.

The strength of EM-BT lies in its innovative integration of PVRES and CB, effectively managing the interplay
between solar irradiance and temperature changes. Additionally, EM-BT exhibits faster convergence and
provides high-quality solutions more efficiently than competing methods, making it well-suited for real-world
energy management applications.

The practical implications of EM-BT are valuable for utility companies and renewable energy stakeholders,
as it enhances the reliability and efficiency of distributed energy systems. Future research should focus on
scaling EM-BT for more complex distribution networks, improving data accuracy, and incorporating additional
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Fig. 7. Convergence evaluation of EM-BT, PSO, GWO, and WOA for all distribution networks in the second
scenario.

environmental factors. Economic analysis will also be crucial to evaluate the cost-effectiveness and environmental
advantages of PVRES-CB configurations, contributing to global renewable energy objectives.
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Fig. 8. Examination of the convergence of EM-BT, PSO, GWO, and WOA techniques across all distribution

systems in the third scenario.
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Fig. 9. Voltage profile variations over a 24-hour cycle for the third scenario across all three networks.
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