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This paper introduces the Efficient Metaheuristic BitTorrent (EM-BT) algorithm, aimed at optimizing 
the placement and sizing of photovoltaic renewable energy sources (PVRES) and capacitor banks 
(CBs) in electric distribution networks. The main goal is to minimize energy losses and enhance voltage 
stability over 24 h, taking into account varying load profiles, solar irradiance, and temperature effects. 
The algorithm is rigorously tested on standard distribution networks, including the IEEE 33, IEEE 
69, and ZB-ALG-Hassi Sida 157-bus systems. The results reveal that EM-BT outperforms established 
methods like Particle Swarm Optimization (PSO), Grey Wolf Optimizer (GWO), and Whale Optimization 
Algorithm (WOA), demonstrating its effectiveness in reducing energy losses and maintaining stable 
voltage profiles. By effectively combining PVRES and CBs, this research highlights a robust approach to 
enhancing both technical performance and operational reliability in distribution systems. Additionally, 
the consideration of temperature effects on PVRES efficiency adds depth to the study, making it a 
valuable contribution to the field of power system optimization.
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Motivation
The increasing complexity of modern life and the depletion of fossil fuel reserves have driven a substantial 
rise in global energy demand, leading to more frequent power losses and voltage fluctuations in electrical 
distribution networks. This growing demand underscores the need to integrate distributed generation (DG) 
units, especially those based on renewable energy sources, into radial distribution systems (RDS)1. Unlike 
traditional power networks, where electricity flows in a single direction from the grid to consumers, DG units 
introduce bidirectional power flows, presenting both challenges and opportunities. DGs can offer numerous 
benefits when integrated effectively, including reduced power losses, improved voltage stability, enhanced 
reliability, energy savings, and delayed infrastructure upgrades. However, realizing these advantages depends 
on precisely optimizing DG placement and sizing. Inadequate planning can increase losses, destabilize voltage 
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profiles, and raise operational costs, making strategic DG deployment essential for improving network efficiency 
and performance.

DG units are decentralized power sources connected to radial distribution systems and can be broadly 
categorized into four types. The first type comprises technologies such as photovoltaic cells and fuel cells, 
which generate only active power (P). The second category includes devices like capacitors and synchronous 
compensators, which produce only reactive power (Q). The third type features DG units such as synchronous 
machines and voltage source converters (VSCs) that can supply both active and reactive power (P & Q). Finally, 
the fourth type consists of induction generators, commonly used in wind farms, which provide active power (P) 
but require reactive power (Q) for operation2.

Incorporating capacitor banks (CBs) into distribution systems enables reactive power generation, improving 
voltage at load buses and reducing power losses, which in turn lessens the demand for reactive power from the 
main grid3. Fixed-switched capacitor banks can also stabilize voltage fluctuations caused by certain DGs types4. 
The combined use of DGs and CBs is expected to reduce distribution losses further, enhance voltage profiles, 
and boost overall system performance. Effective optimization tools are crucial for determining the optimal 
placement and sizing of DGs and CBs to address voltage deviation issues and maximize these benefits.

Advancements in optimization techniques have made it possible to harness the full potential of distributed 
generators. Metaheuristic algorithms, in particular, have gained popularity due to their ability to tackle 
complex optimization problems more effectively than conventional methods. Extensive research has focused 
on minimizing system losses by optimizing the capacity and location of DG units, with various methods and 
strategies being developed to improve the performance of electrical networks.

Related work
For instance, the research in5 introduces a hybrid method combining artificial ecosystem optimization with 
an incremental conductance-based maximum power point tracking (MPPT) technique to enhance efficiency 
in tracking the maximum power point (MPP) in photovoltaic systems. Simulations conducted under varying 
environmental conditions demonstrate that this approach stabilizes DC voltage while complying with IEEE 
standards for total harmonic distortion (THD). Similarly, Jordehi6 proposes an improved Particle Swarm 
Optimization (PSO) method using time-varying acceleration coefficients (TVACPSO) to optimize parameter 
estimation in photovoltaic cells and modules. By dynamically adjusting these coefficients, the method prevents 
premature convergence and balances exploration and exploitation. The TVACPSO technique outperforms 
conventional PSO and other optimization approaches in parameter estimation tasks.

Another study, Rezaee Jordehi7, focuses on photovoltaic systems with high power output, where precise 
parameter estimation is critical. Though PSO is widely used, it often suffers from premature convergence, 
reducing efficiency. To address this, the study presents an Enhanced Leader PSO (ELPSO), which surpasses 
standard PSO and other optimization techniques. In8, a Quadratic Binary Particle Swarm Optimization 
(QBPSO) method is proposed for optimizing the scheduling of shiftable appliances in smart homes. Tested in 
a smart home environment with 10 appliances and 264 decision variables, this method significantly reduces 
electricity costs while maintaining user comfort, outperforming other binary PSO variants.

A further study, Sambhi et al.9, evaluates a hybrid power plant combining solar PV and diesel generators 
for a campus, analyzing various battery storage configurations and assessing both performance and economic 
factors to identify the most efficient solution. This research emphasizes the hybrid system’s cost-effectiveness and 
environmental benefits across different scenarios. In10, recent work introduces a model for the joint allocation of 
capacitor banks and distributed generation (DG), accounting for uncertainties in DG units. Similarly, Das et al.11 
presents a method for sustainable operation of distribution networks aimed at reducing energy losses, improving 
voltage profiles, and decreasing grid dependency.

In12, a hybrid optimization technique combines Weight Improved Particle Swarm Optimization with the 
Gravitational Search Algorithm to optimize the placement of distributed generators and capacitors, maximizing 
cost-efficiency. The study in13 introduces an improved Grey Wolf Optimizer for allocating distributed generators, 
capacitor banks, and voltage regulators to minimize power losses and enhance voltage stability. Meanwhile, 
Milovanović et al.14 presents a hybrid metaheuristic algorithm for optimal placement and sizing of distributed 
generation units and shunt capacitors.

In15, a hybrid optimization strategy combining the Enhanced Grey Wolf Optimizer with Particle Swarm 
Optimization (AREP-EGWO-PSO) is proposed for optimizing the sizing and placement of distributed 
generation units and capacitor banks, leveraging renewable energy resources. Saonerkar and Bagde16 introduce 
a genetic algorithm for optimal placement and sizing of combined distributed generation units and capacitor 
banks. Jannat and Savic17 propose a method that incorporates renewable energy uncertainties into the placement 
and sizing of DGs. Sayyid Mohssen Sajjadi et al.18 employ a memetic algorithm using the voltage stability index 
to optimize the size and location of distributed generators and capacitors, achieving technical, economic, and 
environmental goals. Moradi et al.19,20 propose using a combination of genetic algorithms and particle swarm 
optimization (GA/PSO), as well as imperialist competitive algorithms and genetic algorithms (ICA/GA), to 
address multi-objective optimization problems considering both technical and economic factors. Similarly, S. 
Gopiya Naik et al.21 utilize an analytical method based on the loss sensitivity factor for optimal placement and 
sizing of distributed generation units and capacitors to minimize losses.

In22,23, the Firefly Algorithm and Backtracking Search Algorithm are highlighted as nature-inspired 
evolutionary techniques. In24, a comparison is made between these algorithms and others, such as genetic 
algorithms, particle swarm optimization (GA/PSO), imperialist competitive algorithms, and genetic algorithms 
(ICA/GA), as well as analytical methods from25, for optimizing the placement of distributed generators and 
fixed capacitor banks, reducing power losses and improving voltage profiles. In26, Mohamed et al. apply the Loss 
Sensitivity Factor (LSF) method to determine optimal locations for distributed generators and capacitor banks, 
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using the Bacterial Foraging Optimization Algorithm (BFOA) for sizing. Saonerkar et al.27 propose a genetic 
algorithm for the optimal placement of distributed generators and capacitor banks in distribution networks. 
In28, the Intersect Mutation Differential Evolution Algorithm is introduced to allocate distributed generators and 
circuit breakers simultaneously while ensuring current flow limits are not exceeded. Partha et al.29 propose an 
evolutionary approach based on decomposition verification for allocating distributed generators and capacitor 
banks, focusing on reducing power loss and enhancing system reliability.

Recent developments in power system optimization highlight the inadequacy of traditional single-objective 
and multi-objective optimal power flow (OPF) solutions to meet the complex demands of modern electricity 
networks. The many-objective optimal power flow (MaOPF) methods have gained attention as a critical research 
area. One notable study proposed the many-objective marine predators algorithm (MaMPA) to effectively 
address MaOPF problems, showing superior performance in minimizing operational costs and optimizing 
objectives such as emissions and voltage stability in IEEE 30- and 118-bus systems30.

Another study introduced the Two-Archive Harris Hawk Optimization (TwoArchHHO) algorithm for 
many-objective optimal power flow (MaOOPF) problems, enhancing searchability and performance through 
two-archive concepts, resulting in improved solutions across various IEEE standard systems31.

The role of battery energy storage systems (BESS) in optimizing energy utilization in distribution networks 
has also been emphasized. A study using the crayfish optimization algorithm (COA) for optimal sizing and 
placement of multiple BESSs demonstrated significant improvements in voltage regulation and power loss 
mitigation compared to single BESS installations32.

Additionally, the Energy Valley Optimizer (EVO) algorithm has been proposed for optimizing distributed 
generation (DG) allocation, focusing on photovoltaic (PV) and wind turbine (WT) technologies. Evaluated 
using the IEEE 33-bus test system, the EVO algorithm effectively minimizes power and energy losses compared 
to other recent optimization techniques33.

Finally, Dixit et al.34 presents a Gbest-guided Artificial Bee Colony algorithm for optimizing the placement 
of distributed generation units and capacitor banks in networks with variable loads. Adel et al.35 propose a water 
cycle algorithm to optimize the allocation of DGs and capacitor banks for techno-economic and environmental 
improvements. Similarly, Sambaiah et al.36 employs the Salp Swarm Algorithm, inspired by the collective 
movement of salps, to optimize the placement of distributed generators and capacitors with a focus on technical, 
economic, and environmental objectives. Lastly, Pal et al.37 introduces a modified search algorithm integrated 
with several soft computing techniques for optimizing the placement and sizing of distributed generators in 
distribution networks, with comparisons to recent studies.

A summary of different methods for optimal allocation of distributed generators (DGs) and capacitor banks 
(CBs) in distribution systems is provided in Table 1.

Contribution
This study introduces the Efficient Metaheuristic BitTorrent (EM-BT) algorithm, designed to minimize daily 
energy losses and voltage fluctuations while accounting for varying load profiles over a 24-h period. The 
algorithm has been tested on multiple distribution networks, including the IEEE 33, 69, and ZB-ALG-Hassi Sida 

Authors 
(References) Objective(s) Approach Advantages CBs/DGs Test Network

Publication 
year

Impact of 
temperature 
on network

Impact of 
temperature 
on PV

Hussein et al.38 Minimization of total losses NPO Technical CBs and DGs 33 bus and 69 bus 2021 ✗ ✗

Chandrasekaran 
et al.39

Reducing active power losses, 
optimizing the voltage deviation 
index (VDI), lowering the overall 
cost of electrical energy, and 
minimizing emissions from power 
generation sources

EGWO-PSO
Technical, 
Economic and 
Environmental

CBs and DGs 33 bus and 69 bus 2021 ✗ ✗

Abdel et al.38 Reduction of Power Loss PO Technical CBs and DGs 33 bus and 69 bus 2021 ✗ ✗
Saubhagya et 
al.40

Minimizing System Costs and Line 
Losses in Active and Reactive Power AVO Technical, 

Economic CBs and DGs 85 bus and 185 bus 2022 ✗ ✗

Vimal et al.41 Reduction of Power Loss CFA Technical CBs and DGs 15 bus and 33bus, 85 
bus, and 118 bus 2022 ✗ ✗

Mohamed et 
al.42 Minimizing active losses IGJO Technical CBs and DGs 69 bus and 118 bus 2023 ✗ ✗

Jay et al.43 Reduction of Power Loss GA Technical CBs and DGs
33-bus radial 
network, Sallaghari-
Thimi 11 kV feeder

2024 ✗ ✗

Fettah et al.44 Minimizing the total cost of energy EVO Technical, 
Economic CBs and DGs ZB-ALG-Hassi Sida 

157 buses 2024 ✗ ✗

This paper Energy Loss Minimization EM-BT Technical CBs and DGs
33 bus and 69 bus 
and ZB-ALG-Hassi 
Sida 157 buses

– ✓ ✓

Table 1.  Overview of different techniques for optimal placement of distributed generators (DGs) and capacitor 
banks (CBs) in distribution networks (“✓” signifies that the method is being considered, while “✗” signifies it 
is not).
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157-bus systems, optimizing the placement of photovoltaic renewable energy sources (PVRES) and capacitor 
banks (CBs) for improved overall performance.

A key innovation in this research is the consideration of temperature effects on PVRES efficiency, which 
is often overlooked in similar studies. This comprehensive approach integrates both temperature and solar 
irradiance, providing a more robust solution for distribution network optimization. Temperature variations can 
significantly impact photovoltaic efficiency, material conductivity, and network reliability, making it essential to 
address these factors.

Comparative tests against methods such as Particle Swarm Optimization (PSO), Grey Wolf Optimizer (GWO), 
and Whale Optimization Algorithm (WOA) demonstrate that EM-BT outperforms these techniques in reducing 
energy losses and voltage fluctuations. While increasing the deployment of PVRES and CBs further reduces 
losses, this improvement comes with higher economic costs. The subsequent sections detail the mathematical 
formulation of the EM-BT algorithm (Section “Model mathematics of EM-BT”), modeling for PVRES allocation 
(Section “Optimal placement and size of capacitor banks (CB) and photovoltaic renewable energy sources 
(PVRES) for supportive services in distribution networks”), and a thorough analysis of simulation results under 
varying load conditions (Section “Simulation and results”). The study concludes in Section “Conclusion”.

Model mathematics of EM-BT
In 2022, the Efficient Metaheuristic BitTorrent (EM-BT) algorithm was introduced as a new optimization 
method, inspired by the BitTorrent protocol, widely used for peer-to-peer file sharing. This protocol enables users 
to exchange file segments directly, alleviating the burden on central servers. The EM-BT algorithm leverages this 
concept by encouraging interaction and information sharing among candidate solutions, ultimately improving 
overall performance45. What distinguishes EM-BT is its capacity to provide innovative solutions across diverse 
domains, even in fields where many other metaheuristic techniques have been applied. This underscores the 
algorithm’s versatility and efficiency in addressing problems that traditional optimization methods may not solve 
as effectively.

Similar to other metaheuristic techniques, the EM-BT approach begins by generating a random population 
of candidate solutions.

	 x = BLow + (BUp − BLow) × rand� (1)

where BLow  and BUp represent the maximum and minimum boundaries of the search space, and rand signifies 
a random number uniformly distributed within the range [0, 1].

The matrix containing all candidate solutions can be expressed as follows:

	

X =




x1,1 x1,2
x2,1 x2,2

· · · x1,D

· · · x2,D

...
...

xN,1 xN,2

. . .
...

· · · xN,D


� (2)

N  and D indicate the population size and the problem’s dimension respectively.
This population is then evaluated using a fitness function, to measure the abilities of each solution, comparing 

them at each iteration, and selecting the best one.

	 F = ⌈ f (x1) f (x2) . . . f (xi) . . . f (xN ) ⌉� (3)

F  is a vector that stores the fitness values acquired from the considered fitness function, denoted as f .
In the BitTorrent protocol, users are regrouped into three levels: seed, peers, and new peers. Users within the 

same level download certain file pieces from those in the higher level while exchanging the remaining pieces 
among themselves.

Using the same concept of the BitTorrent protocol, and based on the fitness values, the EM-BT algorithm 
divides the population into three groups: seed, peers, and new-peers. The seed represents the best solution 
discovered thus far, while the peers consist of the first, second, third, and fourth best solutions. The remaining 
individuals in the population form the new peers group.

The candidate solutions are updated at each iteration as follows:

	(a)	� The seed xs, representing the optimal global solution, is updated in each iteration utilizing the following 
equation

	
xiter+1

s = argmin
i=1:N

(f (xi))� (4)

	(b)	� The peers, which denote the solutions in the second level, download file pieces by communicating with the 
seed xs and among themselves (peer-to-peer communication). Thus, the peer solutions are updated in two 
phases using the following equations:

•	 Communication with the seed
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{
xiter+1

i,j = xiter
s,j − α × r ×

(
xiter

s,j − xiter
i,j

)
if rand ≤ 0.5

xiter+1
i,j = xiter

i,j Otherwise
� (5)

Each peer solution xiter+1
i,j  is updated using (5).

The EM-BT flowchart is illustrated in Fig. 1.
Where, the subscripts i and j denote the solution and dimension indices, respectively. i = 1, 2, 3, 4 and 
j = 1, 2, . . . , D.
r and rand are two random numbers taken uniformly from [0, 1].
The parameter α decreases from 2 to 0, enabling the algorithm to transition from exploration to exploita-
tion.
This progression is controlled using the following equation:

	
α = 2 − iter

MaxIter
× 2� (6)

To introduce a random aspect into the EM-BT approach, the candidate solution are updated, if a random 
number, rand, was less than or equal to 0.5; otherwise, it remained unchanged.

•	 Communication peer-to-peer

	

{
xiter+1

i,j = xiter
k,j − α × r ×

(
xiter

k,j − xiter
i,j

)
if rand ≤ 0.5

xiter+1
i,j = xiter

i,j Otherwise
� (7)

�For each peer solution xiter
i,j , another peer xiter

k,j  is selected, then it is updated using (4).

Fig. 1.  Flowchart of EM-BT.
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	 k = 1, 2, 3, 4, withk ̸= i

	(c)	� New-peers communicate with the peers and with other New peers to share information, they update their 
positions, in two phases, using the following equations:

•	 Communication with the peers

	

{
xiter+1

i,j = xiter
l,j − α × r ×

(
xiter

l,j − xiter
i,j

)
if rand ≤ 0.5

xiter+1
i,j = xiter

i,j Otherwise
� (8)

For each new peer xiter
i,j , a peer solution xiter

l,j  is selected, where i = 5, 6, 7, . . . , N , and  assumes values within 
the range1–4

•	 Communication with other new peers

	

{
xiter+1

i,j = xiter
n,j − α × r ×

(
xiter

n,j − xiter
i,j

)
ifrand ≤ 0.5

xiter+1
i,j = xiter

i,j Otherwise
� (9)

�For each new peer solution xiter
i,j , another new peer xiter

n,j  It is selected from its neighbours and then updat-
ed using (9), where. n = 5, 6, 7, . . . , N, withn ̸= i.
�In the EM-BT algorithm, new solutions replace older ones if their fitness values show improvement. This 
updating process continues through multiple iterations until a specified stopping condition is met. Each 
optimization algorithm operates with unique parameters that impact its overall performance. For example, 
EM-BT incorporates a parameter ‘a’ that controls the electromagnetism force and is tied to temperature. In 
Particle Swarm Optimization (PSO), parameters such as cognitive and social coefficients and inertia weight 
guide the algorithm’s behaviour. Similarly, the Grey Wolf Optimizer (GWO) relies on parameters that de-
fine the positions of alpha, beta, and delta search agents, while the Whale Optimization Algorithm (WOA) 
uses parameters that balance exploration and exploitation rates.

The flowchart of the whole implementation process

Step 1: Input data preparation

•	 Collection of solar irradiance, temperature, and load profiles.

Step 2: Initialization

•	 Start the EM-BT algorithm and generate candidate solutions for PVRES and CBs.

Step 3: Iterative optimization process

•	 Evaluate candidate solutions.
•	 Group solutions into Seed, Peers, and New Peers.
•	 Update solutions through BitTorrent-inspired interactions.

Step 4: Final placement and sizing

•	 Identify the optimal locations and sizes for PVRES and CBs.

Step 5 : Performance evaluation

•	 Assess energy losses and voltage profiles.
•	 Compare the EM-BT algorithm’s performance with other methods, such as PSO, GWO, and WOA.

Optimal placement and size of capacitor banks (CB) and photovoltaic renewable 
energy sources (PVRES) for supportive services in distribution networks
Modeling techniques for photovoltaic renewable energy sources
Power output from PVRES modules is highly influenced by local weather conditions, especially solar radiation and 
ambient temperature46. The geographical location largely determines these conditions. Consequently, assessing 
solar radiation levels in a particular region is essential for optimizing the efficiency of PVRES panels. Typically, 
historical data is used to estimate hourly solar radiation and daily temperature fluctuations. This information is 
then divided into various phases, each defined by specific solar radiation and temperature thresholds47,48.

A practical model is employed to enhance the power output of photovoltaic modules49, focusing on 
maximizing efficiency under varying environmental conditions. This model takes into account factors such as 
solar irradiance, temperature, and module characteristics to ensure optimal performance of the PV system:

	
PP v−max = F F ·

(
Isc · G

Gref

)
·
(

Voc · ln (P1 · G)
ln (P1 · Gref ) · Tjref

Tj

)
� (10)
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The highest power output that a photovoltaic (PV) system can achieve is represented by PPv-max, while Isc 
refers to the short-circuit current produced by the system. Solar irradiance, or sunlight intensity, at any specific 
moment, is denoted by Gref, which is the standard reference value for irradiance. The voltage of the PV system 
when open-circuited is expressed as Voc. Additionally, Tjref indicates the reference junction temperature of the 
PV system, and Tj represents the junction temperature at a particular time.

The following formula is used to calculate the constant coefficient P1​.

	
P1 = Isc

G
� (11)

The filling factor (FF) can be expressed as:

	
F F = Ppvmax

Voc · Isc
= VmppImpp

VocIsc
� (12)

The voltage at the Maximum Power Point (MPP) of the photovoltaic system is represented by Vmpp, while Impp 
denotes the current at the MPP of the system.

Optimal allocation and size of capacitor banks (CB) and photovoltaic renewable energy 
sources (PVRES) for auxiliary services: constraints and objectives
In the allocation of Photovoltaic Renewable Energy Sources (PVRES) and capacitor banks (CBs) for auxiliary 
services in distribution systems, the primary objective is to minimize daily energy losses. This objective is 
mathematically expressed as:

	
Eloss =

24∑
h=1

(
Nbr∑
br=1

Ibr (h)2 · Rbr

)
� (13)

Eloss represents the total energy loss per day.
In this context, the number of distribution branches is indicated as Nbr, while the current flowing through 

each branch is represented by Ibr, and Rbr denotes the resistance of each branch. The aim of minimizing these 
parameters is encapsulated in a single-objective model, Fobj, as outlined in Eq. (14).

	
Fobj=Eloss after DG

Eloss before DG
� (14)

Ensuring that the real and reactive power injections from the Photovoltaic Renewable Energy Systems (PVRES) 
and Capacitor Banks (CB) remain within their predefined operational limits is crucial. These limits are specified 
as P P V RESk_max  for real power injection from PVRES and Qcb j_max for reactive power injection from 
the CB. Adherence to these constraints at all times is essential for maintaining system stability, reliability, and 
optimal performance, thereby preventing risks of overloading or imbalances within the network.

	 0 < P P V RESK < P P V RESk_max k = 1, . . . . , nP V � (15)

	 0 < Qcbj < Qcbj_max j = 1, . . . ., ncb� (16)

PPVRES denotes the real power supplied to the grid by photovoltaic renewable energy sources (PVRES), 
whereas QCB indicates the reactive power contributed by capacitor banks (CB)50. Additionally, it is essential 
to maintain the voltage at each distribution node and the current in all distribution branches within designated 
safe limits at all times. These precautions are vital for ensuring the power distribution network’s overall stability, 
efficiency, and safety51.

	 Vm_min < Vm < Vm_max m = 1, . . . . , nB� (17)

	 Ibr < Ibri_max i = 1, . . . . , nbr� (18)

In this context, m​ expressed the voltage at bus m, with Vm_min and Vm_max denoting the respective minimum 
and maximum voltage limits for that particular bus. These limits are typically set within a 10% tolerance range 
to ensure the stability of the entire network. Furthermore, Ibri_max  defines the maximum allowable thermal 
capacity of the branch, which is a crucial constraint for preventing overheating or overloading of network 
components. These operational constraints must be consistently satisfied across all hours, nodes, and branches 
to maintain reliable and secure power distribution.

Additionally, the photovoltaic (PVs) penetration threshold is regulated using the coefficient KP
52. It ensures 

that the total installed capacity of PV systems, 
( ∑

k∈nP V

PP Vk

)
, equals 50% of the system’s total active power 

demand, PDm . This constraint helps balance renewable energy integration with system stability.

	

∑
k∈nP V

PP Vk = KP ·
∑

m∈nB

PDm � (19)

Scientific Reports |         (2025) 15:2670 7| https://doi.org/10.1038/s41598-025-85484-3

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


The inequality constraints associated with the control variables, as described in Eqs.  (15) and (16), are 
automatically managed by the EM-BT mechanism. However, the inequality constraints in Eqs. (17) and (19) 
require special attention.

Model of distribution networks
Generally, the resistance of an AC line is determined by:

	 R = r0 · l� (20)

r0 represents the linear resistance in [Ω/km], and l denotes the line length in meters. In this study, we adjust 
the resistance values for all network buses (33, 69, and 157) to reflect real conditions by incorporating 24 daily 
temperature values, as follows:

	 Rti = R [1 + α25 (ti−25)]� (21)

The value of Rti ​ indicates the resistance at the i-th hour, with i ranging from 1 to 24 throughout the day. The 
resistance R corresponds to the material’s resistance at a standard reference temperature, typically 25  °C, 
measured in ohms [Ω]. The parameter α25​ represents the temperature coefficient of resistance at this reference 
temperature, while t denotes the temperature (in Celsius) at which the resistance, adjusted for temperature, is 
calculated.

Simulation and results
The EM-BT algorithm has been utilized to reduce energy losses by accounting for fluctuations in PVRES output, 
capacitor bank output, and daily load variations. This approach has been applied to three different distribution 
Networks: IEEE 33, IEEE 69, and ALG-AB-Hassi Sida, which comprises 157 buses. For the IEEE 33 system, three 
and six PVRES units were allocated alongside nine capacitor banks. In contrast, due to the larger size of the IEEE 
69 and ZB-ALG-Hassi Sida systems, more PVRES units were deployed. The IEEE 69 system received five and 
ten PVRES units along with eighteen capacitor banks, whereas the ZB-ALG-Hassi Sida system was allocated ten 
and twenty PVRES units and twenty-five capacitor banks. Each system was assessed with various profiles for 
capacitor banks, PVRES, and load over a 24-h timeframe. The input data (detailed in Table 2) and the results for 
each testing system are elaborated upon in the following sections.

Three scenarios were evaluated for all networks (IEEE 33, IEEE 69, and ZB-ALG-Hassi Sida 157), as described 
below:

•	 Scenario 1 A load flow analysis was performed for each hour of loading, accounting for temperature effects 
across all networks.

•	 Scenario 2 The proposed EM-BT algorithm was compared to Particle Swarm Optimization (PSO), Grey Wolf 
Optimization (GWO), and the Whale Optimization Algorithm (WOA) for the placement of PVRES and ca-
pacitor banks. The objective was to minimize the function defined in Eq. (14).

•	 Scenario 3 A similar comparison was conducted, focusing exclusively on PVRES placement. This scenario 
used twice as many PVRES units as Scenario 2 while keeping the number of capacitor banks unchanged, to 
further reduce the objective function.

In both scenarios involving optimization, the EM-BT algorithm was executed for 100 iterations using 30 search 
agents. For Scenario 1, voltage adjustments were applied to ensure that node voltages remained within 10% of 
the nominal value. In all scenarios, each algorithm was tested over 10 iterations to standardize the number of 
function evaluations.

The EM-BT algorithm’s performance was tested on three networks: IEEE 33, IEEE 69, and ZB-ALG-Hassi 
Sida 157. The IEEE 33 network consists of 32 branches and 33 nodes, IEEE 69 has 68 branches and 69 nodes, and 
the ZB-ALG-Hassi Sida system includes 156 branches and 157 nodes. Detailed information about the branches 
and nodes in these networks is available in the literature53,54. Diagrams of these systems, each operating at a 
nominal voltage of 12.66 kV, are shown in Fig. 2.

The LGEB laboratory located at Mohamed Khider University in Biskra, Algeria, offers extensive statistical 
insights into the variations of photovoltaic renewable energy sources (PVRES) influenced by solar irradiance 
and temperature across the IEEE 33, IEEE 69, and ZB-ALG-Hassi Sida 157 networks.

Figure 3a to c display the daily average power generation fluctuations of PVRES across the 33, 69, and 157 
bus networks, effectively illustrating the impact of solar irradiance variations throughout the day. These figures 
highlight the influence of sunlight intensity on PVRES output, with power generation peaking during midday 
and diminishing in the early morning and late afternoon. Meanwhile, Fig. 4 presents the average PVRES output 

Base case IEEE 33 IEEE 69 ZB-ALG-Hassi Sida 157

Energy losses (kWh) 3.567e + 03 3.797e+03 1.799e+04

Peak bus voltage (pu) 1 1 1

Lowest bus voltage (pu) over 12 h 0.903 0.909 0.890

Table 2.  Evaluation of daily energy loss across various distribution systems with peak and minimum bus 
voltage levels.
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variations over a 24-h timeframe, incorporating the combined effects of both solar irradiance and temperature 
fluctuations. This figure emphasizes the compounded impact of environmental factors on PVRES efficiency, 
with temperature increases reducing output during peak irradiance hours. Furthermore, Fig.  5 provides a 
comprehensive overview of load variations across all three networks, showcasing the demand fluctuations that 
occur alongside generation variations. Together, these figures underscore the dynamic interaction between 
power generation and demand, as well as the importance of adaptive strategies for optimizing PVRES placement 
and operation in response to these environmental and load-related variations.

Fig. 2.  Schematic representation of the three networks.
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The influence of temperature on photovoltaic modules, as shown in Figs. 3 and 4, demonstrates a noticeable 
reduction in power output from PVRES. For the IEEE 33 system, the output drops from 2100  kW at 50% 
efficiency to 1,155 kW at 27.5% efficiency. In the IEEE 69 system, the output decreases from 1925 kW at 50% 
efficiency to 1,058 kW at 26% efficiency. For the ZB-ALG-Hassi Sida 157 system, power output falls from 13,650 
kW at 50% efficiency to 7,507.5 kW at 27.5% efficiency.

Figure 5a–c shows that peak load demand typically occurs around 12:00 p.m. and lasts for 4 h for both the 
IEEE 33 and IEEE 69 systems, fully meeting 100% of the demand. Conversely, Fig. 5c indicates that the peak 
demand for the ZB-ALG-Hassi Sida 157 system occurs around 6:00 p.m., extending for 3 h, during which the 
system also fulfils 100% of the load.

Scenario 1
In this case, load flow estimates are performed hourly, taking into account the effects of temperature on demand. 
Figure 6a–c show the voltage profiles for the IEEE 33, IEEE 69, and ZB-ALG-Hassi Sida 157 networks across 
all distribution nodes, highlighting distinct characteristics for each loading hour. Notably, these voltage profiles 

Fig. 3.  Yearly daily average PVRES variations due to irradiance for the three networks.
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remain below the baseline lower bound. During peak consumption at hour 14, the ZB-ALG-Hassi Sida 157 
network experiences a minimum voltage of 0.87 pu, while the IEEE 33 and IEEE 69 networks reach a minimum 
of 0.89 pu. Additionally, Table 3 provides a detailed overview of daily energy loss, underscoring the impact of 
temperature on network performance.

The results in Fig. 6 and Table 3 reveal that the energy losses for the ZB-ALG-Hassi Sida 157, IEEE 69, and 
IEEE 33 distribution networks are 19,367 kWh, 4,085.7 kWh, and 3,813 kWh, respectively. These observed losses 
exceed the base case estimates of 17,995 kWh for the ZB-ALG-Hassi Sida 157 network, 3797 kWh for the IEEE 
69 network, and 3567.7 kWh for the IEEE 33 network. Consequently, this translates to an increase in energy 
losses of 7.62% for the ZB-ALG-Hassi Sida 157 network, 7.60% for the IEEE 69 network, and 6.88% for the 
IEEE 33 network. The higher energy losses reflect the effects of factors such as temperature, load variations, and 
network structure on power efficiency, particularly under less-than-ideal conditions. These findings underscore 
the necessity for optimizing network configurations, the placement of PVRES and capacitor banks, and the 
selection of loss-reducing measures to mitigate inefficiencies and improve overall performance in each network 
scenario.

Fig. 4.  Yearly daily average PVRES fluctuations considering irradiance and temperature effects across the three 
networks.
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Senario 2
In this case, the EM-BT approach is compared to the PSO, GWO, and WOA methods, aiming to minimize the 
objective function defined in Eq. 14. Various allocations of PVRES and capacitor banks (CBs) were considered 
during the evaluation process. Table 4 summarizes the energy losses, voltage variations, and reduction rates 
for the IEEE 33, IEEE 69, and ZB-ALG-Hassi Sida 157 networks. The results indicate that the EM-BT method 
significantly reduces energy losses: from 3,831.3 kWh/day to 1,951.5 kWh/day for the IEEE 33 network, from 
4,085.7 kWh/day to 1,764.7 kWh/day for the IEEE 69 network, and from 19,367 kWh/day to 8,141.4 kWh/day 

Fig. 5.  Yearly daily average variations for the three distribution Networks.
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for the ZB-ALG-Hassi Sida 157 network. Additionally, voltage magnitudes improve across all buses, with notable 
enhancement at the weakest bus.

Figure 7a–c illustrate the convergence behaviors of the optimization techniques (EM-BT, PSO, GWO, and 
WOA) for the IEEE 33, IEEE 69, and ZB-ALG-Hassi Sida 157 networks. The EM-BT approach demonstrates 
excellent convergence properties, consistently achieving optimal PVRES and CB configurations more efficiently. 
For the IEEE 33 network, as depicted in Fig.  7a, EM-BT converges faster and more reliably than the other 
methods. Similarly, Fig. 7b shows that EM-BT performs exceptionally well in terms of speed and stability for 

Fig. 6.  Hourly voltage profiles over a 24-hour period for each of the three networks in the initial scenario.
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the IEEE 69 network. For the ZB-ALG-Hassi Sida 157 network, Fig. 7c highlights the superior convergence of 
EM-BT, achieving minimal energy losses. Overall, Fig. 7 confirms that the EM-BT approach excels in delivering 
rapid and consistent convergence across all networks.

Scenario 3
In this analysis, we evaluate the performance of the EM-BT algorithm in comparison with three alternative 
optimization techniques: Particle Swarm Optimization (PSO), Grey Wolf Optimizer (GWO), and Whale 
Optimization Algorithm (WOA). Various configurations were tested, incorporating six, ten, and twenty 
allocations of Photovoltaic Renewable Energy Sources (PVRES) along with multiple capacitor banks. The 
primary objective was to minimize the function defined in Eq. 14.

Table 5 summarizes the results, highlighting reductions in voltage deviations, energy losses, and energy loss 
percentages for the IEEE 33, IEEE 69, and ZB-ALG-Hassi Sida 157 networks. For the IEEE 33 network, the EM-
BT algorithm reduces energy losses by 57.60%, lowering them from 3,831.3 kWh/day to 1,624.4 kWh/day, while 
also improving the voltage at the weakest bus from 0.89 pu to 0.93 pu. Similarly, in the IEEE 69 network, EM-BT 
achieves a 65.44% reduction in energy losses, decreasing them from 4,085.7 kWh/day to 1,412 kWh/day, and 
raising the voltage at the weakest bus from 0.89 pu to 0.92 pu. In the ZB-ALG-Hassi Sida 157 network, EM-BT 
results in a 63.17% reduction in energy losses.

Figure  8a–c illustrate the convergence behaviours of EM-BT, PSO, GWO, and WOA across the three 
networks, with Fig. 8b specifically showing an enhanced voltage profile under Scenario 3. The EM-BT algorithm 
demonstrates superior convergence properties across all networks, affirming its effectiveness in optimally sizing 
and placing capacitor banks and PVRES to minimize energy losses, as also seen in Scenario 2 (Fig. 7).

Figure  9a–c illustrate the voltage characteristics for the IEEE 33, IEEE 69, and ZB-ALG-Hassi Sida 157 
networks, each exhibiting distinct operational features. In particular, Fig.  9b demonstrates marked voltage 
stability improvements in the IEEE 69 network achieved through the EM-BT algorithm. Unlike in the baseline 
scenario, all voltage levels in this network remain above the minimum acceptable threshold, even under 
increased load conditions. During peak demand, both the IEEE 69 and ZB-ALG-Hassi Sida 157 networks 
experience a minimum voltage drop to 0.92 per unit (pu), while the IEEE 33 network maintains a slightly higher 
minimum voltage of 0.93 pu. These results underscore the effectiveness of the EM-BT approach in optimizing 
the placement and sizing of PVRES and capacitor banks, which not only mitigates voltage drops but also 
preserves voltage stability across all nodes. Consequently, this optimization significantly enhances power supply 
reliability, particularly during high consumption periods, ensuring robust operational resilience in diverse 
network environments.

Figure  10a–c illustrate the percentage reduction in energy losses achieved across the second and third 
optimization scenarios for the IEEE 33, IEEE 69, and ZB-ALG-Hassi Sida 157 systems. The results demonstrate 
a clear trend: as the number of PVRES units integrated into the network increases, the reduction in energy 
losses becomes more pronounced. This correlation suggests that a higher density of distributed generation from 
PVRES enhances the network’s capacity to meet local demand directly, thereby reducing the need for energy 
transmission over longer distances and minimizing associated losses. Additionally, the strategic placement 
and sizing of PVRES units, as guided by the EM-BT algorithm, ensure that these reductions are maximized 
by mitigating power flow imbalances and optimizing voltage profiles. This outcome underscores the potential 
for distributed PVRES deployment to significantly improve energy efficiency and reduce operational costs in 
electrical distribution systems.

Conclusion
This study introduces the EM-BT optimization method, designed for the strategic placement and sizing of 
Photovoltaic Renewable Energy Sources (PVRES) and Capacitor Banks (CB) within distribution systems. The 
main goal of EM-BT is to minimize energy losses while considering various load scenarios over a 24-h period, 
along with temperature fluctuations. Our results indicate that EM-BT significantly outperforms traditional 
optimization methods, such as the Grey Wolf Optimizer (GWO), Particle Swarm Optimization (PSO), and 
Whale Optimization Algorithm (WOA), particularly in reducing energy losses while adhering to operational 
constraints.

The strength of EM-BT lies in its innovative integration of PVRES and CB, effectively managing the interplay 
between solar irradiance and temperature changes. Additionally, EM-BT exhibits faster convergence and 
provides high-quality solutions more efficiently than competing methods, making it well-suited for real-world 
energy management applications.

The practical implications of EM-BT are valuable for utility companies and renewable energy stakeholders, 
as it enhances the reliability and efficiency of distributed energy systems. Future research should focus on 
scaling EM-BT for more complex distribution networks, improving data accuracy, and incorporating additional 

IEEE 33 IEEE 69 ALG-AB-Hassi Sida 157

Energy Loss .e+03 (kWh) 3.831 4.085 19.367

Peak bus voltage (pu) 1 1 1

Lowest bus voltage (pu)/14h 0.892 0.896 0.8784

Energy Loss rising (%) 6.88 7.06 7.08

Table 3.  Daily energy loss for all distribution networks considering the impact of temperature.
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environmental factors. Economic analysis will also be crucial to evaluate the cost-effectiveness and environmental 
advantages of PVRES-CB configurations, contributing to global renewable energy objectives.

Fig. 7.  Convergence evaluation of EM-BT, PSO, GWO, and WOA for all distribution networks in the second 
scenario.
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Fig. 8.  Examination of the convergence of EM-BT, PSO, GWO, and WOA techniques across all distribution 
systems in the third scenario.
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Fig. 9.  Voltage profile variations over a 24-hour cycle for the third scenario across all three networks.
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Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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Fig. 10.  Percentage decrease in energy loss for the second and third scenarios across all distribution systems.
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