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A B S T R A C T

The work presented in this paper focuses on formulating the development of time-dependent electromagnetic 
field laws through the application of Gauss’s divergence theorem. The first part of the discussion looks at the 
basic ideas of electromagnetism. It focuses on how classical formulations of the laws of electromagnetism can be 
adapted to account for non-stationary conditions, especially regarding magnetic fluids that don’t conduct elec
tricity. It is suggested that employing Gauss’s divergence theorem could help improve the computational analysis 
of these generalized equations, which would make them more useful in magnetic fluid dynamics. The paper 
examines the intricate interactions between non-conductive particles and conductive fluids under magnetic 
fields. By putting these interactions into a single theoretical framework, this work aims to help us understand 
non-stationary electromagnetic phenomena and how they affect many different scientific and engineering fields. 
The concluding section of the study examines the prospective practical applications of these extended equations. 
They could enable the development of more advanced electromagnetic devices and systems. Creating a strong set 
of analytical tools that can find new scientific paths and useful applications is the main goal of the study, 
particularly in the areas of electromagnetic induction and fluid dynamics. This research offers potential for 
substantial progress in both theoretical comprehension and technological advancement, The proposed method is 
applicable to real-world systems such as ferrofluid-based cooling, magnetic dampers, plasma generators, and 
smart electromagnetic devices. These applications demonstrate the practical benefits of coupling field behavior 
with boundary dynamics using Gauss’s theorem.

1. Introduction

Maxwell’s equations serve as the cornerstone of classical electro
magnetism, encapsulating the behavior of electric and magnetic fields 
through a coherent framework. These equations can be expressed in 
both vector and scalar forms, which play a pivotal role in understanding 

how electric charges and currents generate electric and magnetic fields. 
Gauss’s law for electric fields and Gauss’s law for magnetic fields illus
trate the relationship between charge and the resulting field configu
rations [1,2]. Such principles highlight the importance of the enclosed 
charge in determining the electric field, which is foundational to the 
study of electromagnetic theory.
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Furthermore, the application of Gauss’s theorem elucidates the 
processes of magnetic and electrical induction [3–5], extending our 
understanding beyond static fields to dynamic interactions. The vector 
forms of Maxwell’s equations incorporate this theorem to provide 
comprehensive insights into how changing electric fields induce mag
netic fields, aligning with the established criteria for electromagnetic 
behavior [6–8]. The substitution of these criteria gives rise to new for
mulations, expanding the applicability of Maxwell’s equations in 
various physical contexts.

Moreover, the scalar form of these equations, particularly through 
Faraday’s law of induction, emphasizes the significance of electric and 
magnetic fields’ interactions [9–11]. The scalar potential field’s steepest 
decline is intrinsically linked to induced electromotive forces, illus
trating the foundational principles that govern electrical induction. 
Thus, Maxwell’s equations, through their vector and scalar forms, 
encapsulate the dynamic interplay between electric and magnetic phe
nomena, firmly grounded in Gauss’s theorem [12–13].

The study of non-conductive magnetic liquids in the presence of 
magnetic fields has garnered significant attention in recent years, as it 
presents unique challenges and opportunities for research [6,14,15]. 
Understanding the interactions between non-magnetic particles and 
conductive fluids is crucial, particularly in the context of strong mag
netic fields. According to Sun et al. in [16], the interaction behaviors of 
non-magnetic particles within a conductive medium reveal intricate 
dynamics influenced by magnetic forces. This study fundamentally 
contributes to our knowledge of how such particles migrate and interact 
under varying conditions, emphasizing the importance of a detailed 
force analysis in such environments.

The review by Vadde et al. in [17] expands on the methods employed 
to characterize the flow of incompressible Newtonian liquids when 
subjected to magnetic and electric fields. Their findings highlight the 
complexities involved in non-invasive techniques, which are essential 
for observing the behavior of non-conductive fluids [18,19]. These in
sights affirm that various factors significantly influence the flow dy
namics within non-conductive magnetic liquid systems, thereby 
establishing a framework for further investigations in this field.

Additionally, the research conducted by Sun et al. in [20] elucidates 
the solid-liquid and particle-particle interactions during processing, 
particularly emphasizing the role of micrometer-sized non-conductive 
particles in a conducting liquid. This work illustrates the multifaceted 
nature of magnetic field effects and the electrohydro-dynamic in
teractions that ensue, ultimately enhancing the understanding of 
non-conductive magnetic fluids in real-world applications. Collectively, 
these studies provide a comprehensive overview of the behavior of 
non-conductive magnetic liquids in magnetic fields, underscoring the 
significance of continued exploration in this promising area of research.

Many researchers have increasingly relied on Maxwell’s equations to 
analyze and simulate complex behaviors in magnetically influenced 
fluid systems. Their work spans a wide range of applications, including 
MR dampers, electromagnetic welding, plasma generators, and ferro
fluid dynamics. This growing trend reflects the versatility and effec
tiveness of Maxwell’s framework in coupling electromagnetic theory 
with fluid mechanics, leading to enhanced modeling accuracy and 
deeper insight into electro-magneto fluidic phenomena. For instance, as 
addressed by both Wael Elsaady et al. in [21], Thierry Tchoumi et al. in 
[22], Sangeeta B. Punjabi et al. in [23], Fabian Klemens et al. in [24], 
Katja Henjes in [25], M. Lohakan et al. in [26], Peter Vadasz in [27], and 
P.H.N. Pimenta et al. in [28].

In light of the foregoing, this paper primarily aims to establish a 
novel expression of the time-dependent electromagnetic field laws based 
on the integral form of Gauss’s law for divergence. This approach seeks 
to simplify the analysis of non-stationary magnetic fields and improve 
numerical solutions to these equations. The paper also aims to extend 
the application of this approach to magnetic fluid dynamics, providing a 
unified framework for studying interactions between magnetic fields 
and fluids. Through this new formulation, the paper seeks to open new 

horizons in understanding and analyzing non-stationary electromag
netic phenomena in a variety of scientific and engineering applications.

2. Fundamental Maxwell’s equations in electromagnetism

2.1. Maxwell-gauss equation

Gauss’s theorem is also derived from Coulomb’s law. [29] Electric 
flux a closed surface S is equals the algebraic sum of the total charges Q1 
enclosed within the surface, multiplied by the factor 1/ε0 [30]: 
∫∫

◯
(s)

⋅ E→.ds
→

=
1
ε0

∑

1
Q1 =

1
ε0

∫ ∫ ∫

(τ)

ρ.dτ (1) 

According to Ostrogradsky theorem, it is possible to write: 
∫∫

◯
(s)

⋅ E→.ds
→

=

∫ ∫ ∫

(τ)

div E→dτ (2) 

Where: τ is the volume bounded by surface S.From Eqs. (1) and (2), we 
can establish that: 

div E→=
ρ
ε0

(3) 

Ø Case of charges outside a closed surface (S)

The elements dS1 and dS2 are seen under the same angle dΩ in ab
solute value. However, E1

̅→ and d S1
̅→ are collinear while E2

̅→ and d S2
̅→ are 

opposite Fig. 1. The fluxes [31,32]: 
{

dΦ1 = E1
̅→

.dS1
→

dΦ2 = E2
̅→

.dS2
→ (4) 

are therefore of opposite signs. Elementary fluxes cancel out in pairs, so 
the total flux E1

̅→ of the field created by charge Q outside the closed 
surface is zero. 

Ø Scenario of charges within a confined surface (S)

Charges inside a sealed surface S represent the sum of the electric 
charge contained by a sealed surface. Since all surface element vectors 
point outward (Fig. 2), the net flux through S is nonzero and equals the 
sum of all elementary fluxes from the enclosed charge Q [13–15]: 

Φ =
Q

4πε0
.

∫

dΩ (5) 

The unit of solid angle is defined as the angle that cuts out a unit area 
on a sphere of unit radius. Since the surface area of a unit sphere is (4πR² 
= 4π), the solid angle that encompasses the entire space from a single 
point has a value of 4π. When this sum is extended to all of space, we get 
Φ=Q/ε0. If there are n charges (Q1, Q2……Qn) inside the surface S: 

Fig. 1. Charges external to a closed surface S.
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Φ =
1
ε0

∑n

i=1
Qi (6) 

We impose that:Φ =
Qi
ε0

No matter what charges are on the outside, the flow of E through a 
closed surface is always equal to the sum of the charges inside divided by 
ε0. We can show that it is just the local form of Gauss’s theorem by using 
Eq. (3): We will integrate this equation over a volume τ that a surface S 
surrounds: 
∫ ∫ ∫

(τ)

div E→dτ =
1
ε0

∫ ∫ ∫

(τ)

ρ.dτ→
∫∫

◯
(s)

⋅ E→.ds
→

=
1
ε0

Qint (7) 

Qint being the charges inside the surface S

2.2. Maxwell-Ampere equation

In magnetostatics, Ampère’s theorem relates magnetic fields to 
electric currents and applies best in highly symmetrical cases [33,34].

The evolution of the concept from static to dynamic charges leads to 
the phenomenon of magnetism. Moving charges produce steady currents 
while maintaining charge distribution in space. This shift represents a 
step towards a more comprehensive understanding of electromagnetic 
phenomena (∂ρ

∂t = 0).
Current lines in magneto-statics must form closed loops. As a result, 

systems resembling capacitors, which would cause charge accumula
tion, are not permitted in magneto-static theory. This principle em
phasizes the continuous nature of magnetic fields, contrasting with 
electrostatic systems where charge can accumulate 
(∂ρ

∂t ∕= 0→Current not closed). In this case, the charge conservation 
equation [33,34]: 
{

div J→= 0
∇.J = 0

(8) 

The behavior of magnetic fields from steady current distributions is 
described by two fundamental principles from Maxwell’s equations, 
forming the mathematical basis for understanding static magnetic phe
nomena [2,13,18]: 
{

div B→= 0
rotB̅̅→

= μ0 J→
(9) 

Eq. (9) indicates that the magnetic field is flux-conservative, signi
fying that the flux through any closed surface S equals zero: 
∫∫

◯
(s)

⋅ B→. ds
̅→

=0 (10) 

This signifies that the magnetic field lines neither converge nor diverge 
from any sources of magnetic fields. In other words, there are no mag

netic charges comparable to electric charges that produce the electric 
field. Consequently, magnetic field lines must create closed loops. 
Consequently, Eq. (9) enables us to express [11]: 

div
(

rotB̅̅→
)
= μ0div J→= 0→div J→= 0 (11) 

This confirms that at any point in space, there can be no accumulation or 
spontaneous disappearance of charge. Using Eq. (9), we can write the 
following: let S be a surface resting on a contour C 

rotB̅̅→
= μ0 J→⇒

∫ ∫..

(S)

rotB̅̅→ dS
̅→

= μ0

∫ ∫..

(S)

J→ dS
̅→

⇒
∮..

(C)

B.→dl
→

= μ0.I (12) 

Consider the setup in Fig. 3, where an emf source is suddenly con
nected to condenser with plates in parallel, causing a time-dependent 
current J to flow through the wire. If Ampère’s law is applied to loop 
C at a moment before the capacitor is fully charged (i.e., J∕=0), surface S1 
encloses a nonzero current, while surface S2, which passes between the 
capacitor plates, encloses zero current since no conduction current flows 
through it. This discrepancy reveals that Ampère’s law in its original 
form fails in this scenario, highlighting an inconsistency that necessi
tates a modification to the law itself [34].

Ampère’s law in its standard form is incompatible here, requiring a 
modification to the theory.

We must therefore modify Ampère’s law. To achieve this, Maxwell 
proposed adding an extra term, known as the displacement current Jd, to 
the real current J. Thus, Ampère’s relation is revised accordingly, and 
we write: 

rotB̅̅→
= μ0

[
J→+ Jd

→
]

(13) 

Where Jd
→ is an additional term that has the same physical dimension as a 

current density. This term is known as the displacement current. Let us 
now determine its expression. To do so, we begin by evaluating div J→ . 

J→=
1
μ0

rotB̅̅→
− Jd
→ (14) 

Where: 

div J→= div

[

rot
(

B
μ0

)̅̅̅̅̅ →

− Jd
→
]

= − divJd
→ (15) 

However, the conservation of charge imposes div J→= −
∂ρ
∂t which implies: 

divJd
→

=
∂ρ
∂t

(16) 

If we consider that the Maxwell-Gauss relation remains valid in variable 
regime, then ρ = ε0div E→, and we arrive at the relation: 

Fig. 2. Charges inside a closed surface S.

Fig. 3. discharge of the capacitor. Although S1 and S2 share the same boundary 
loop C, the currents flowing through them are different.
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divJd
→

= div

(

ε0.
∂ E→

∂t

)

(17) 

where: 

Jd
→

= ε0
∂ E→

∂t
(18) 

Lastly, the Maxwell-Ampère relation is presented in its final form as 
follows: 

rotB̅̅→
= μ0

[

J→+ ε0
∂ E→

∂t

]

(19) 

2.3. Maxwell-Faraday equation

Examine a wire loop C that encircles a surface S as depicted in Fig. 4. 
Around the circuit is a magnetic field B. If the magnetic flux Φ changes 
across this surface, it causes an electric current and, as a result, an 
electromotive force "e" in the circuit [17,20,35]: 

e = −
dΦ
dt

(20) 

The current arises from the field d E→. allowing us to write [36]: 

e =

∮..

(C)

E.→dI
→

(21) 

The magnetic flux Φ of field B→ through surface S of the circuit is given 
by: 

Φ =

∫ ∫..

(S)

B→ dS
̅→

⇒ −

∫ ∫..

(S)

∂ B→

∂t
. dS
̅→

=

∮..

(C)

E.→dI
→

(22) 

And considering Stokes theorem [37]: 
∫ ∫..

(S)

[

−
∂ B→

∂t
. dS
̅→
]

=

∫ ∫..

(S)

rotE̅̅→ dS
̅→

(23) 

This results in the differential formulation of Faraday’s law: 

rotE̅̅→
= −

∂ B→

∂t
(24) 

We now show that Faraday’s law in Eq. (20) is equivalent to Eq. (24). 
Using Fig. 3, we write: 

∫ ∫..

(S)

rotE̅̅→ dS
̅→

= −

∫ ∫..

(S)

∂ B→

∂t
dS
̅→

(25) 

On the other hand, we have: 

e = −
dΦ
dt

=

∮..

(C)

E.→dl
→

= −
∂
∂t

∫ ∫..

(S)

B→ dS
̅→

(26) 

The Maxwell-Faraday Eq. (24) delineates the phenomenon of in
duction, wherein a fluctuating magnetic field generates an electric field 
[30].

3. Maxwell’s equations in magnetic fluids

Magnetic and magnetorheological fluids, whose properties change 
under magnetic fields, are increasingly used. Their behavior is modeled 
using Maxwell’s and Navier-Stokes equations, typically solved numeri
cally [32,35]. The symmetry of operators in these models affects solu
tion behavior. An example of Maxwell’s equations in operator form 
follows: 

‖ −

∂
∂t

rot

div 0
‖ .

(
D
H

)

=

(
J
ρ

)

(27) 

‖

∂
∂t

rot

div 0
‖ .

(
B
E

)

= 0 (28) 

In a nonconductive environment, the symmetry of the problem is 
evident (j=ρ=0). Non-stationary fields exhibit rotational characteristics 
(E=-gradV), requiring novel solution methodologies for non-stationary 
issues. Operator equations in summation notation further elucidate 
this concept: 

(rotE)i = εijk.
∂Ek

∂xj
(29) 

This expression employs standard derivatives rather than covariant de
rivatives. The disparity persists identically for both categories. The 
expression constitutes an antisymmetric matrix, which in three di
mensions corresponds to a vector. We use the Levi-Civita tensor ε to 
make the dual vector of a second-order tensor that is not symmetric. The 
curl of a three-dimensional vector field is defined as the dual of the 
rotational tensor [38,39]: 

(rotE)i = εijk
1
2
.

[
∂Ek

∂xj
−

∂Ej

∂xk

]

(30) 

Gauss’s divergence theorem reveals that any spatial change in a variable 
g(x,t) corresponds to a boundary response. Changes at S affect V, and 
vice versa. Fig. 5 illustrates this. The theorem states [15]: 
∫..

V

∂g(x, t)
∂xi

dV =

∫..

S

g(x, t)ni.dS (31) 

This relationship is crucial for understanding the interplay between 
volume and boundary effects in physical systems.

This principle can be applied in qualitative analysis of electromag
netic fields, development of numerical methods for solving related 
equations, and optimization of electromagnetic fields. Its main advan
tage is providing precise insights into boundary conditions’ effects on 
the problem, both qualitatively and quantitatively. The principle’s 
importance is heightened because determining boundary conditions is 
often the researcher’s responsibility, making understanding their impact 
crucial in scientific [37,40,41].

Fig. 4. Principle of Fraday Law.
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Engineers use integral identities based on two main ideas to solve 
electromagnetic field problems. These are Stokes’ theorem for open 
areas S1,2,3 bounded by a curve f and Gauss’s divergence theorem for 
closed areas S. We demonstrate this in (24).

As many researchers have discussed in their works, such as in Refs. 
[13,14], the focus has been on resolving issues that are not stationary. In 
this context, Modifying the electromagnetic field equations into a form 
suited for enhancement, theoretical analysis, and computational tech
niques is appropriate. This change can be achieved by using Gauss’s 
divergence theorem and the symmetry of the Kronecker delta operator 
(δij, δji). This modification applies to all time-dependent terms in the 
electromagnetic field equations, both for dielectric and conducting 
materials, where j and r are not equal to zero. The change, which will be 
explained in more detail below, makes the non-stationary term easier to 
use with Gauss’s divergence theorem [42]: 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

rotE̅̅→
−

∂ B→

∂t
= 0 ⇒

∫…

f

Edf +
∫…

f

∂B
∂t

ndS1,2,3 = 0

∂Bi

∂t
= xi.

∂
∂xj

(
∂Bi

∂t

)

+
∂Bi

∂t
.
∂xi

∂xj
=

∂
∂xj

[
∂Bi

∂t
xi

]
(32) 

By applying Gauss’s divergence theorem, the equations are further 
transformed into a format that facilitates analysis. Using relationship 
(32) as a foundation, new integral identities can be derived. These 
identities are now expressed over the closed surface, which incorporates 
all boundary conditions. As a result, we can formulate the following two 
equations: 

∂Bi

∂t
.xi =

∂
∂xj

[
∂Bi

∂t
xi.xi

]

(33) 

∫…

S

(n X E)ds +
∫…

S

(
∂B
∂t

n
)

.xds = 0 (34) 

In the next section, we’ll show how to prove the previous equations by 
modifying Maxwell’s laws to analyze the impact of variable terms in the 
field V on the frontier of the region S. The solution relies on symmetry 
and Gauss’s divergence theorem, applied to both vector and scalar forms 
in analysis, computational techniques, and optimization, considering 
both conductive and insulating environments. The final section explores 
a model describing the interaction between ferrofluid and a field of 
magnets, applying Gauss’s theorem to adjust the Navier-Stokes model 
[43].

4. Symmetry principles solve equations in non-conductive 
mediums

Symmetry plays a crucial role as a fundamental tool in various dis
ciplines, particularly in electromagnetism and technical sciences [2]. In 

the field of electromagnetism, methods based on symmetry enable 
diverse approaches to studying orbital angular momentum and pseudo 
momentum. These approaches include contemporary techniques that 
incorporate spin-orbit coupling and explore electromagnetic knots. In 
technical sciences, symmetry is essential for maintaining system stabil
ity and helps in differentiating between symmetric and antisymmetric 
components within electromagnetism [15,37], in the field of symmetric 
electromagnetism, the following expressions can be written: 

∂Bi

∂xj
=

1
2
.

(
∂Bi

∂xj
+

∂Bj

∂xi

)

+
1
2
.

(
∂Bi

∂xj
−

∂Bj

∂xi

)

(35) 

In (10) and (25), we use Gauss’s theorem to rewrite Maxwell’s 
equations and come up with a new way to understand them that ties 
symmetry to magnetic induction. 

‖ −

∂
∂t

εijk
∂

∂xj

∂
∂xi

0
‖ .

(
Bi
Ek

)

=

(
0
0

)

(36) 

On the left-hand side of Eq. (36), just the antisymmetric component 
(dEk/dxj) appears. We will now introduce a new derivative to Eq. (36)
through an adjustment to its right-hand side. which contains a variable 
element. This modification can be written as follows: 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂Bj

∂xj
= 0

∫..

V

∂Bj

∂xj
xidV =

∫..

S

Bjxi.njdS −

∫..

V

Bj
∂xi

∂xj
dV = 0

(37) 

This adjustment allows us to reformulate the relation in a way that better 
reflects the system’s antisymmetric nature. The previously mentioned 
relationship relies on three-dimensional space to perform integration on 
each of its terms. This approach allows us to analyze the phenomenon 
within a more comprehensive geometric framework, providing a deeper 
understanding of the relevant physical processes. And after applying the 
Kronecker delta symmetry modification (∂xi

∂xj
= Aij = Aji), we obtain a 

modified form of the equation.

Furthermore, taking into account the assumption that ∂
∂xj

(
∂Bj
∂t

)

= 0, 

we can rewrite Eq. (38) in several different forms, each highlighting a 
specific aspect of the fundamental physical relationship: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫..

V

BidV =

∫..

S

Bjxi.nj.dS ⇒
Or in terms of vectors

∫..

V

B.dV =

∫..

S

(B.n).x.dS (a)

∫..

V

∂Bi

∂t
dV =

∫..

S

∂Bj

∂t
xi.njdS ⇒

Or in terms of vectors

∫..

V

∂B
∂t

dV =

∫..

S

(
∂B
∂t
.n
)

.xdS (b)

(38) 

The various forms of Eq. (38) allow for a deeper analysis and a wider 
understanding of the physical phenomenon under study.

Equation (38b) shows that the edges of a region can have unsteady 
magnetic flux density states, which could change the control volume 
method. We modify the structure of Eq. (36) for symmetry by employing 
Expression (38a) and the divergence theorem (Eq. (39)). This provides 
us with a novel formulation of Maxwell’s equations [19,32]. 

∂Bi

∂t
=

∂
∂xj

[
∂Bj

∂t
.xi

]

(39) 

Fig. 5. Volume (V) with boundary (S), divisible into control volumes (ΔV).
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∂
∂xj

[

εijk.EK +
∂Bj

∂t
xi

]

= 0 (40) 

The first term in brackets in Eq. (40), which stands for the second- 
order antisymmetric tensor, can be broken down into symmetric and 
antisymmetric parts [12]. The existing approach incorporates the 
non-stationary component derived from average values: 
∫

V

∂B
∂t

d(ΔV) =
∂Bc

∂t
.ΔV (41) 

ΔV =
1
3
∗

∫

ΔS

(x.ni).d(Δs) (42) 

Whereas the new method relies on Relation (40) for direct integration 
(Eq. (43)), with the same principle expressed in vector form (Eq. (44)). 
∫

ΔV

∂Bi

∂t
d(ΔV) =

∫

ΔV

∂
∂xj

(
∂Bj

∂t
xi

)

d(ΔV) =
∫

ΔS

(
∂Bj

∂t
ni

)

.xid(Δs) (43) 

∫

ΔV

∂B
∂t

d(ΔV) =
∫

ΔS

(
∂B
∂t
.n
)

.xd(ΔS) = 0 (44) 

∫

S

[

(nXE)+
(

∂B
∂t
.n
)

.x
]

dS = 0 (45) 

Eq. (45) is the integrated vector form of (40), showing that magnetic 
induction changes inV originate at the system boundary. This aids in 
optimizing non-stationary tasks via boundary conditions. Later sections 
derive results for non-conductive spaces.

As widely acknowledged by researchers in the field of electricity, 
both charge density and conductivity are zero in non-conductive ma
terials (ρe = σ = 0). In this situation, Maxwell’s equations take on a 
symbolic form [44,45]: 

‖

−
∂
∂t

εijk
∂

∂xj

∂
∂xi

0
‖ .

(
Di

Hk

)

=

(
0

0

)

(a)

‖

∂
∂t

εijk
∂

∂xj

∂
∂xi

0
‖ .

(
Bi

Ek

)

=

(
0

0

)

(b)

(46) 

By applying transform (39) to Equation (39a), Maxwell’s equations 
can be represented in alternative forms, as demonstrated below: 

If(39b)⇒then
∫..

V

∂D
∂t

dV =

∫..

S

(
∂D
∂t
.n
)

.xdS (47) 

If(40)⇒then∂Di

∂t
=

∂
∂xj

[
∂Dj

∂t
.xi

]

(48) 

If(41)⇒then ∂
∂xj

[
∂Dj

∂t
xi − εijk.HK

]

= 0 (49) 

If(46)⇒then
∫

S

[(
∂D
∂t
.n
)

x − (n×H)

]

dS = 0 (50) 

The prior discussion clearly shows that we can restructure Maxwell’s 
equations in a non-conductive environment. The conclusions derived in 
this context, including those pertaining to the control volumes method, 
remain relevant.

5. Scalar formulations of Maxwell’s laws for insulating 
environments

We get the scalar form of the electromagnetic formula by multiplying 
Eq. (36) by the position vector x [18]. This makes it easier to analyze and 
improve the system’s performance under different conditions. 
⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

rotE.x = −
∂B
∂t
.x

εijk.
∂Ek

∂xj
.xi = −

∂Bi

∂t
.xi

(51) 

divB = 0→
∂Ej

∂xj
.xixi = 0 (52) 

∫..

V

∂Bj

∂xj
xixidV =

∫..

S

Bjxixi.njdS − 2
∫..

V

Bj
∂xi

∂xj
xidV = 0 (53) 

Through the last equation can be written: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫..

V

BjδijxidV =
1
2

∫..

S

BjxixinjdS

in the vector form
∫..

V

BxdV =
1
2

∫..

S

(B.n)(x.x)dS

(54) 

Taking into account the divergence theorem in the form equals zero 
(div ∂B

∂t = 0), in this case, Eqs. (53) and (54) can be written as follows: 

∫..

V

∂Bi

∂t
xidV =

1
2

∫..

S

∂Bj

∂t
xixinjdS (55a) 

in vector notation 
∫..

V

∂B
∂t

xdV =
1
2

∫..

S

(
∂B
∂t
.n
)(

|x|2
)

dS (55b) 

Leveraging the divergence theorem and applying it to (55a) yields a 
crucial relationship. This relationship provides the foundation for a 
novel reformulation of Maxwell’s Eq. (51), offering a fresh perspective 
on electromagnetic theory (56a) and Substituting (56b) into (51) results 
in: 

∂Bi

∂t
xi =

1
2
.

∂
∂xj

(
∂Bj

∂t
xixi

)

(56a) 

∂
∂xj

(εijk.Ek +
1
2

∂Bi

∂t
xixi = 0 (56b) 

The expression within the brackets can be decomposed into sym
metric and antisymmetric components, mirroring the approach used in 
(40). When expressed in its integral form, this yields: 
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

∫..

S

[
1
2
.
∂Bj

∂t
xixi + εijk.xi

]

njdS = 0

n the vector form
∫..

S

[
∂B
∂t
.n|x|2 + 2x(n × E)

]

dS = 0

(57) 

A scalar formulation of Maxwell’s laws, was derived under the 
assumption that Gauss’s divergence theorem is valid. These relation
ships facilitate the assessment of numerical outcomes and indicate non- 
fixed variations in the induction of magnetism at regional boundaries, 
enabling the determination of time-dependent values. The equations are 
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advantageous for optimization because of their scalar characteristics. 
Upon reevaluating the scenario of a non-conductive medium, Eq. (46)
can be articulated in both its differential and integral representations, as 
demonstrated in Table 1.

Both analytical and numerical methods benefit from the improved 
version of Maxwell’s equations.

6. Magnetic fields affect non-conductive magnetic liquids

In Sections 4 and 5, the authors present a new version of Maxwell’s 
equations for non-conductive environments [5]. Using control volumes 
and the Maxwell stress tensor, they study incompressible fluid motion 
under non-conductive magnetic fields. The main goal is to develop a 
mathematical model of liquid flow in these conditions, requiring two 
key elements: 

Ø The tensor of irreversible stresses in the liquid
Ø The volumetric magnetic force that the magnetic field applies to the 

liquid

The general relationships for both the electromagnetic force (F) and 
magnetic flux density (Bk) are given as follows [2,3,5,35]: 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

F =
∂Hk

∂xi
Mk

Bk = μ0Hk + Mk

Mk = χHk

(64) 

In this context, pe represents charge density for a non-conductive mag
netic liquid (pe = 0), Bk denotes magnetic flux density, Hk signifies 
magnetic field intensity, Mk indicates magnetization, and χ represents 
magnetic susceptibility.

The Kelvin force, or magnetic force density, is given by: 
⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

F =
χ
2

∂H2

∂xi

H2 = Hi.Hi

M2 = Mi.Mi

(65) 

Magnetic liquid flow models use the Maxwell stress tensor, consid
ering non-Newtonian behavior and including forceF [6,46]: 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

F =
∂Mij

∂xj

Mij =
χ
2

δijHk.Hk
(66) 

Magnetic liquid equilibrium equations are: 
⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂
∂xj

[

ρ
(

∂vj

∂t
− gj

)

xi + ρvivj − δij − Mij

]

= 0

δij = − ρδij + δij

gi =
∂

∂xi
(gkxk)

(67) 

For an incompressible magnetic liquid, the continuity equation is 
(∂vi

∂xi
= divv = 0). Using Eq. (40), we can reformulate the Navier-Stokes 

equation for this scenario: 

∂
∂xj

[

ρ.∂vj

∂t
xi + ρvivj − δij − ρδij

(

gkxk −
1
2

χH2
)]

= 0 (68) 

Applying the Divergence theorem [2–6,35], we can express this 
equation in a new integral form: 

∫−

S

[

ρ
(

∂v
∂t
.n
)

.x+ ρ(v.n).v − σ −

(

gx −
1
2

χ(H.H)

)

.n
]

dS = 0 (69) 

The advantages of the new variant are evident when comparing Eqs. 
(66) with (67) in numerical solutions using the finite volume method 
and boundary condition analysis. Assuming (divA = 0), the following 
holds for (38b): 
∫..

V

∂v
∂t

dV =

∫..

S

(
∂v
∂t
.n
)

.xdS (70) 

Accordingly, the continuity equation results in: 
∫..

S

∂v
∂t

n.dS = 0 and
∫..

S

∂B
∂t
.ndS (71) 

What is significant about these relations is that solely the normal 
component of (∂B/∂t) manifests the influence of not stationary elements 
∂B
∂t .n in the area V on the system’s limits.

Gauss’s divergence theorem is used to develop new formulations of 
Maxwell’s eqs. for non-stationary magnetic fluids. This approach is 
significantly simpler than classical methods, which rely on complex 
differential forms that are difficult to handle numerically. By converting 
the eqs. into integral forms, Gauss’s theorem emphasizes boundary ef
fects, simplifying analysis and simulation. The method is highly effective 
for studying interactions between electromagnetic fields and magnetic 
fluids in dynamic conditions. It supports applications such as ferrofluid- 
based cooling, plasma generators, and magnetic dampers. For applied 
researchers, it offers precise tools for analyzing complex electromag
netic systems and improving the design of medical devices, precision 
motors, and renewable energy systems affected by time-varying fields by 
linking internal behavior to boundary conditions.

7. Conclusions

In this work, we have developed a new formulation of the not sta
tionary Maxwell’s equations based on Gauss’s divergence theorem and 
applied this approach to magnetic fluid dynamics. The study demon
strates that the new model provides a more accurate representation of 
the interaction between electromagnetic fields and unsteady magnetic 

Table 1 
Differential and integral forms of maxwell’s equations: original and new variants 
for non-conductive media.

Differential form

Original equations New variant

‖

−
∂
∂t

εijk
∂

∂xj

∂
∂xi

0
‖

(
Di
Hk

)

=

(
0
0

)

(46a) 

‖

∂
∂t

εijk
∂

∂xj

∂
∂xi

0
‖

(
Bi
Ek

)

=

(
0
0

)

(46b)

∂
∂xj

[
∂Dj

∂t
xixi − 2εijk

∂Hk

∂xj
.xi

]

= 0 (58) 

∂
∂xj

[
∂Bi

∂t
xixi +2εijk

∂Ek

∂xj
.xi

]

= 0 (59)

Integral form
Original equations New variant
∫..

V

∂D
∂t

xdV =

∫..

S

(nXH).xdS (60) 

∫..

V

∂B
∂t

xdV = −

∫..

S

(nXE).xdS (61)

∫..

S

(
∂D
∂t
.n
)

|x|2dS = 2
∫..

S

(n×H)xdS (62) 

∫..

S

(
∂B
∂t
.n
)

|x|2dS = − 2
∫..

S

(n×E)xdS (63)

Nonstationary variables Dx,t and Bx,t originates around the system frontier, 
affecting their behavior within volume V. The scalar Maxwell equations, which 
come from Gauss’s theorem, make numerical analysis and optimization easier by 
linking changes in induction to boundary conditions and variables that change 
over time.
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flow, further enhancing our understanding of these systems’ behavior 
under nonlinear and complex conditions. The modified equations 
exhibit remarkable flexibility in incorporating additional effects, such as 
viscosity and magnetic conductivity, within a coherent mathematical 
framework.

Moreover, this formulation opens promising prospects for future 
research, particularly in the fields of numerical modeling and spectral 
analysis of complex dynamic systems. This work can be expanded to 
include more intricate thermal and temporal effects or be integrated 
with models of smart and phase-changing materials, such as ferromag
netic materials and magnetic nanofluids. It is also expected that this 
theoretical framework will contribute significantly to improving the 
design of microelectromechanical systems (MEMS) and advancing 
magnetic energy storage technologies.

Finally, the findings of this study represent a significant step towards 
the development of advanced analytical tools for studying electromag
netic phenomena in heterogeneous media, paving the way for numerous 
applications in applied physics and energy engineering, as well as 
magnetic resonance techniques and 3D printing technologies based on 
magnetic fields.
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