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This study presents a novel approach for optimizing UAV (unmanned aerial vehicle) Multicircular 
flight control by developing a fractional order proportional integral derivative (FOPID)-based hybrid 
Eagle strategy particle swarm optimization ant lion optimizer (HESPSOALO). The proposed algorithm 
combines the strengths of particle swarm optimization (PSO) and the ant lion optimizer (ALO), which 
are enhanced by the Eagle strategy to systematically fine-tune the FOPID controller parameters. 
This hybrid optimization method aims to improve system stability, responsiveness, and disturbance 
rejection in UAVs, particularly in challenging dynamic flight conditions. The proposed approach 
was validated against traditional control methods that utilize FOPID (Base), the Base HESPSOALO 
algorithm, the FOPID-based HPSOGWO (Hybrid Particle Swarm Optimization-Gray Wolf Optimizer), 
and the FOPID-based HGWOALO (Hybrid Gray Wolf Optimization-Ant Lion Optimizer) with a set 
of benchmark functions used in the analysis. The results demonstrate a minimization of position 
and angular errors, reduced oscillations, and overall improved control stability for the FOPID-based 
HESPSOALO compared with the other methods. Furthermore, a multicriteria decision-making 
(MCDM) framework is applied to evaluate the overall performance of alternative control strategies 
utilizing the CRiteria importance through intercriteria correlation (CRITIC) and technique of order 
preference by similarity to ideal solution (TOPSIS) techniques. The MCDM analysis demonstrates 
that among the evaluated criteria, Kp has the highest importance, with a weight of 0.244019, 
whereas Kd is deemed the least significant, with a weight of 0.161023. The ranking results reveal 
that the HESPSOALO algorithm (Base) is the best-performing controller method, with a ranking 
score of 0.571161, indicating its superior control performance across major metrics. In contrast, the 
FOPID + HPSOGWO controller method ranks the lowest, with a score of 0.282794. The findings have 
significant industrial implications, particularly in sectors where UAVs are critical for precision tasks, 
such as logistics, agriculture, surveillance, and environmental monitoring. By optimizing the FOPID 
controller parameters, the HESPSOALO algorithm enhances UAV stability, responsiveness, and 
reliability in dynamic environments, resulting in more precise control and robust performance under 
varying conditions. This improvement may reduce operational risks and maintenance costs while 
increasing efficiency, prolonging UAV service life, and achieving energy savings. This study provides a 
robust solution for UAV control based on the potential of hybrid optimization algorithms to improve 
UAV precision and reliability in autonomous flight.
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There has been total integration of unmanned aerial vehicles (UAVs), otherwise known as drones, in various 
aspects of our lives, such as defense, surveillance, agriculture, infrastructure monitoring and commercial 
delivery, depending on the field. Owing to their ability to either operate autonomously or semiautonomous, 
UAVs are well positioned to perform tasks in hazardous or impractical environments where human intervention 
would be impossible. UAV applications are growing, and their control systems need to evolve to provide precise 
navigation, stability and reliability under dynamic and complex environments. Despite these advances, however, 
UAV control remains a challenging problem, as their flight dynamics are highly dynamic and nonlinear. UAV 
control is complicated by external disturbances, including wind gusts, varying payloads, and obstacles, and is 
sensitive to perturbations in both positioning and orientation; robust control strategies are needed that can 
maintain stability and limit error during these disturbances. To control a UAV, effective UAV control systems 
need to ensure that the UAV remains on its intended trajectory with minimum errors in position, velocity, and 
angular displacement (yaw, pitch and roll). This level of control was achieved via advanced algorithms that can 
quickly and accurately respond to changing conditions1,2.

As with other aspects of control theory, traditional proportional-integral-derivative (PID) controllers 
have been a mainstay in the UAV control community since they are simple and effective in linear systems. 
Unfortunately, PID controllers tend to fail to control the nonlinearities and time-varying behavior of UAVs in 
complex maneuvering. However, such limitations demand more complexity in control methods, as researchers 
resort to control techniques that involve the Fractional-Order Proportional-Integral-Derivative (FOPID) 
controller, a more sophisticated version of the classical PID controller that replaces the integral and derivative 
components with fractional order functions. Therefore, the extra flexibility in the FOPID results in better 
performance in terms of stability and better performance in terms of robustness since it is better able to handle 
the complicated dynamics of UAVs. Nevertheless, proper parameter tuning of the FOPID controller is a complex 
and time-consuming process. In dynamic environments, the parameters need to be tuned manually, and as a 
result, the performance is suboptimal. To address this problem, hybrid optimization algorithms are automated 
and improved tuning processes. Hybrid optimization methods use the strengths of various optimization 
techniques to search for an optimal set of control parameters that can be used only at the peak performance of 
the FOPID controller3,4. To understand the importance of our topic, two important questions are introduced as 
follows:

The FOPID controller augments precision, flexibility and robustness. The control system for the 
circumnavigation of multiple targets or reference points via UAVs is a complex system that can be difficult to 
stabilize, especially in the dynamic environments where UAVs operate. It is well suited for these challenges, and 
it has multiple advantages over traditional PID controllers. Compared with the pure P controller, the FOPID 
controller in the DMCC is one of the major contributions from the perspective of the controller that serves to 
track the trajectory more accurately. In a DMCC situation, UAVs must travel around a series of target points 
on continuous circular paths. This level of precision must be maintained, particularly when many UAVs are 
involved in distributed control. Using the fractional order terms in the FOPID controller yields more refined 
control to track more accurately generated circular paths. Thus, the UAVs can stay on course in the presence of 
external disturbances or dynamic variations5.

This FOPID controller provides stability and robust improvement of the UAVs for these operations. The key 
to ensuring stability in the coordinated movements of UAVs as they circumnavigate is as UAVs collaborate. The 
major elements in the FOPID controller are introduced to the system, which can better handle the nonlinear 
dynamics of the UAV and increase the robustness of the control system to disturbances and stability risk. This 
added stability is critical in DMCCs with UAVs that must continuously realign their positions with respect to 
each other without inducing path deviations or collisions. A second major requirement of DMCCs is accurate 
coordination of various UAVs. In this area, the FOPID controller excels because each UAV can adjust its position 
and velocity with respect to the movement of other UAVs in the system. The FOPID controller fractional 
components guarantee smoother, more controlled responses to the positional and velocity errors, improving the 
overall tower coordination of the UAV fleet. As UAVs circumnavigate their targets, more seamless interactions 
between UAVs are needed, which is important for maintaining the integrity of the control system. In addition 
to increasing stability, coordination, and UAV adaptability to changing environments, the FOPID controller 
improves the tradeoff between the output dwell time and the gain used to specify it. This, however, can interfere 
with the UAV trajectory because of external interference from wind, obstacles, and communication delays in the 
DMCC. This fractional order allows the FOPID controller to be more flexible and make better adjustments to 
the control output; thus, it is suitable for a variety of disturbances, such as when UAVs respond effectively. This 
adaptability ensures that the system can keep operating as stable as possible, as it slows dynamic environments 
that might constrain traditional PID controllers. Furthermore, compared with the existing implementations, the 
FOPID controller presents more effective damping in the case of oscillations for the DMCC since, in that case, 
convergence of UAVs to their desired circular paths must be imposed without excessive overshoot. The FOPID 
controller provides better control of oscillatory behavior so that UAVs converge faster to their target. More 
refined control is achieved over the UAVs’ response to deviations from their paths through the fractional order 
derivative and integral components, which help minimize oscillations and improve overall system convergence. 
Finally, the FOPID controller’s parameters can be tuned in the DMCC context. Compared with traditional PID 
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controllers, the FOPID controller provides more control gain optimization with more degrees of freedom. In a 
multiagent system such as the DMCC, this is particularly useful, as UAVs may be required to do so with different 
circumnavigation ratios or speeds. The overall performance of the system can be improved by the ability to 
fine tune these parameters for each individual UAV, and each UAV can operate optimally under the distributed 
control framework6.

The key role of optimization algorithms in maintaining both PID and FOPID controllers in the distributed 
Multicircular circulation control (DMCC) framework for UAVs is demonstrated. The use of these algorithms 
to fine-tune the parameters of the controllers strongly affects the ability of the system to fly on stable, precise 
and coordinated flight paths. UAVs have complex and highly nonlinear dynamic problems, particularly if they 
are operating in distributed environments with multiple vehicles. When the controller parameters need to be 
adjusted for such scenarios, the result is often suboptimal performance. Optimization algorithms take place here 
to provide a more systematic and more efficient procedure for choosing the right control settings for both a PID 
controller and an FOPID controller7.

Optimization algorithms can overcome traditional PID controller limitations because of the inherent 
limitations of manual tuning. While simple and commonly used, PID controllers have difficulty handling the 
nonlinear dynamics and multiagent nature of DMCC systems. Inappropriately tuned, these controllers may lead 
to oscillatory, unstable, or ineffective disturbance responses. Using optimization algorithms, including Particle 
Swarm Optimization (PSO), Genetic Algorithms (GA), or hybrid algorithms, the parameters of a PID controller 
(proportional, integral, and derivative gains) can be modified so that better control can be achieved. This allows 
UAVs to travel along more stable circular paths around designated targets as perceived by the UAV, minimizing 
positional and velocity errors in the presence of external disturbances, e.g., wind or communication delays8.

Adding fractional terms to the FOPID controller makes optimization more essential when the fractional 
form is used. In contrast, FOPID controllers do not require all these parameters, nor do they require that the 
summation constant be exactly 1, as does a traditional PID controller; however, their flexibility comes at a cost 
since fractional calculus is used, meaning that more parameters are introduced, which must be tuned more 
finely. By including the fractional-order integral and derivative components, the control of the system’s response 
is enhanced to make DMCC systems handle the dynamics of UAVs more efficiently. However, this flexibility 
involves the challenge of choosing appropriate values for these parameters, a task that cannot be achieved by 
manual tuning alone. This process is simplified by optimization algorithms that automate the search for the best 
fractional order parameters so that, under an FOPID controller, the UAVs’ trajectories can be managed in the 
best way possible9.

The DMCC enables optimization algorithms to adapt PID and FOPID controllers to both dynamic and 
uncertain environments. Optimization algorithms are used to tune the control parameters for PID controllers 
such that the UAVs can be more responsive and adaptable to external disturbances in real time. The role of 
optimization increases even further for FOPID controllers, as the fractional order terms enable a more gradual, 
more precise control response. These terms are optimized so that the UAVs remain stable and coordinated under 
rapidly varying conditions and that the UAV system is as adaptable as possible. Additionally, the convergence and 
stability of the control system in the DMCC are improved significantly by optimization algorithms. Optimizing 
the PID and FOPID controllers for a UAV reduces oscillations and overshoot and results in better convergence 
for the UAV to its desired circular path. This stability is essential in multiagent systems such as DMCCs, where 
multiple UAVs must cooperate to achieve coordinated circumnavigation. Controllers are tuned via optimization 
algorithms to avoid collisions or deviations away from the desired flight path and prevent UAV interactions10.

Recently, a comprehensive literature review of recent research articles presenting new approaches for UAV 
control, autonomous system emulation, and energy-efficient data collection systems has been conducted. 
References are divided by the type of controller used, by whether a control or optimization method has been 
applied, and by tuning parameters (Kp, Ki, Kd, λ, µ) or flight dynamics (pitch, roll, yaw). Furthermore, the 
table shows the aims of each study, and the results obtained. The structured review provides a clear comparison 
of various control strategies, and the effectiveness in real-world applications where UAV control, voltage 
regulation, and vehicle maneuvering are used are shown in Table 1.

A combination of a fuzzy fractional-order PID (FOPID) controller and layered learning and proximal policy 
optimization (PPO) was proposed in11 for simultaneous control and path planning of quadrotor drones. The use 
of this hybrid method provides improved path planning efficiency and overall control performance with better 
control and navigation of UAVs by adjusting the PID parameters (Kp, Ki, Kd) and fractional orders (λ, µ). This 
finding shows that the gain in system control caused by the enhanced control scheme in complex environments 
is sufficiently high to justify its use in real-time applications. The authors hybridize the Golden Jackal and 
Golden Sine Optimizers (GOJ-GSO) for the control parameter tuning (Kp, Ki, Kd) of the PID controller in12. 
This method provides a robust tuning method, which significantly increases not only the accuracy but also the 
responsiveness of the system. The results demonstrated this hybrid optimization to achieve optimal control for 
several engineering applications. Furthermore, a fractional sliding mode control (FSMC) scheme that uses a 
potential field algorithm to minimize instability was introduced in13 for cooperative flight control. This is an 
approach for cooperative control of a fleet of quadrotors when pitch, roll and yaw motions are optimized in 
terms of coordinated flight. Multiple UAV operations in challenging environments are demonstrated in a study 
that successfully shows improvements in maneuverability and synchronization among multiple UAVs. The SMA 
motor control algorithm presented in14 was further explored in an SMA motor control algorithm for optical 
image stabilization via shape memory alloy (SMA) motors. The objective of this study is to establish a stable 
image stabilization method via precise robot control. This approach effectively shows the ability of SMA motors 
to maintain the system stability needed in applications where precise optical imaging is needed, such as aerial 
imaging.
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In15, researchers worked on energy-efficient data collection for UAV-supported Internet of Things (IoT) 
systems. To optimize the power consumption of UAVs during data collection tasks, this study employs a 
differential evolution-based optimization system. We present the method and show how it effectively reduces 
energy usage, prolongs the operational time of UAVs in IoT networks, and enhances large-scale data collection 
in real-world applications. Sliding mode control (SMC) was used in16 for voltage sag compensation by a dynamic 
voltage restorer (DVR). This method of voltage regulation allows the voltage instability to be corrected while 
allowing distributed power to ensure power delivery in critical systems. The results show that sliding mode 
control appears to improve the DVR’s ability to sustain voltage levels, effectively providing a passive means to 
mitigate power sags. To tune the proportional integral (PI) controller parameters (Kp, Ki) in wireless power 
transfer systems, the IWOA was improved by the authors of17. This optimization improves the accuracy and 
stability of frequency tracking control in wireless systems. Enhanced PI control is imperative for power transfer 
efficiency under varying operating conditions. Fractional-order sliding mode control (FSMC) was proposed in18 
as an intelligent control system for autonomous maneuvering of vehicles. The following study aims to improve 
the precision of vehicle control for autonomous systems, especially in complex environments that need dynamic 
adjustments. The analytical results show that the roll of the vehicle was significantly improved, which helped 
advance autonomous vehicle technologies. Finally, in19, a nonlinear active disturbance rejection control (ADRC) 
approach was taken for stability analysis of inverted pendulum systems. It is intended to show the stability 
control of nonlinear systems via ADRC, a robust control method that compensates for disturbances. We confirm 
the effectiveness of ADRC in maintaining system stability under such challenging dynamic conditions and, by 
extension, in systems sensitive to control accuracy.

With respect to multiple criterion optimizations of PID and FOPID parameters in distributed multicircular 
circumvention control (DMCC), we identify several critical gaps and challenges in recent studies on UAV control 
and optimization. Although significant advances in control theory and optimization algorithms have been made, 
many researchers have not fully addressed the inherent trade-offs when these controllers are tuned. This domain 
is especially challenging, as most approaches that have been proposed overrely on traditional optimization tools, 
which tend to ignore the multiobjective nature of UAV control systems. UAVs work in complicated settings 
where controllers must search for two or more struggle sketches with stability, exactness, flexible handling, and 
computational productivity. Most normal optimization techniques attempt to optimize a single cost function or 
collection of metrics but do not often explore the sensitive relationships among key performance indicators. The 
inherent complexity and multiple dimensions of this problem pose major challenges in UAV optimization, as 
normal methods are not well suited to this problem. Standard optimization algorithms such as Particle Swarm 
Optimization (PSO) Genetic Algorithms (GA) and others can provide acceptable solutions in few cases, but they 
tend to neglect the intricate trade-offs of performance metrics such as positional accuracy, response time, energy 
consumption and an aspect of stability while keeping in mind the fulfillment of security risks and business law. 
For example, if a tuned FOPID controller is better at stabilizing UVAs, it will not be as fast or precise. In such 
cases, there is no ‘best’ set of parameters since bettering one performance parameter may necessitate hurting the 
other. The result of this limited feasibility in these trade-offs is a problem where existing approaches fall short 
in fully assessing the interdependencies between these trade-offs to realize suboptimal UAV systems for real-
world applications. Furthermore, most current research does not address how to assign proper weightings in 

Ref. & author 
name Controller type Method type

Criteria 
type Aims Achieved results

Shahbazi et 
al.11

Fuzzy fractional order 
PID (FOPID)

Layered Learning with proximal policy 
optimization (PPO)

Kp, Ki, Kd, 
λ, µ, path 
planning, 
controlling

Simultaneous controlling and path 
planning in quadrotor drone

Improved control performance, 
efficient path planning

Mou et al.12 PID Hybrid golden jackal and golden sine 
optimizer (GOJ-GSO)

Kp, 
Ki,Kd

PID controller tuning for performance 
improvement

Enhanced tuning of PID controllers 
using hybrid optimization approach

Alabsari et 
al.13

Fractional sliding 
mode control (FSMC)

Cooperative control, potential field 
algorithm

Pitch, roll, 
yaw

Cooperative flight control for a fleet of 
quadrotors

Coordinated quadrotor flight 
achieved through FSMC with 
potential fields

Li et al.14 SMA motor control 
algorithm

Modeling and control algorithm for SMA 
motors N/A Optical image stabilization through 

SMA motor control
Stable control of SMA motors for 
image stabilization

Abdel-Basset 
et al.15

Differential 
evolution-based 
system

Evolution-based Optimization for Energy-
Efficient Data Collection N/A Energy-efficient data collection system 

for UAV-supported IoT
Optimized energy usage in UAV-
IoT systems

Abdelaal et 
al.16 Sliding mode control Dynamic Voltage Restorer (DVR) control 

for voltage sag compensation N/A Voltage sag compensation using DVR 
with sliding mode control

Improved voltage regulation under 
sag conditions

Yang and 
Guan17

PI (proportional-
integral) controller

Improved Whale Optimization Algorithm 
(IWOA) for parameter tuning Kp,Ki

PI parameters tuning for wireless 
power transfer system

Enhanced PI control for frequency 
tracking in wireless power systems

Shet et al.18 Fractional-order 
sliding mode control

Intelligent control for autonomous vehicle 
maneuvering N/A

Maneuvering of an autonomous 
vehicle through fractional sliding 
mode control

Improved vehicle maneuvering 
accuracy

Jie and 
Yuanqing19

ADRC (active 
disturbance rejection 
control)

Nonlinear ADRC-based control system for 
inverted pendulum N/A Stability analysis and control of 

nonlinear systems
Demonstrated stability control in 
nonlinear ADRC-based systems

Table 1.  Summary of recent literature on control methods and optimization techniques in UAVs and 
autonomous systems.
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the performance criteria space in UAV control systems. Every criterion is important because, without carefully 
crafting the relative importance of each criterion, it is almost impossible to achieve balanced outcome-driven 
optimization. Usually, standard optimization techniques do not offer a suitable way to determine the relative 
significance of various objectives. This is a large gap, as the weights of different performance metrics, such as 
position error and velocity error, can dramatically change the optimization results. In practice, a UAV system rarely 
has true equal weighting or arbitrary choices, as is often a default in the literature. The further inability to critically 
analyze the importance of each criterion further complicates the selection of optimal parameters; thus, these 
solutions are not applicable in the DMCC, which is a complex multiagent environment. These challenges need to 
be overcome by researchers using more sophisticated multicriteria decision-making (MCDM) techniques. One 
way to achieve objective weights for different criteria is by CRiteria importance through intercriteria correlation 
(CRITIC), whereby we analyze the correlation between criteria to assign weights. Using CRITIC, we address 
the critical gap in traditional optimization by providing a systematic way to evaluate the relative importance of 
different performance indicators such that trade-offs are handled properly. After CRITIC has determined the 
weights, the values of possible solutions can be ranked via the technique of order preference by similarity to ideal 
solution (TOPSIS), which is based on the closeness of these solutions to an ideal solution. Six steps are given for 
implementing TOPSIS for evaluating each solution, as the best and worst possible outcomes for each criterion 
are considered, eliminating the shortcomings of standard approaches and providing a more holistic view of the 
optimization problem. Traditional optimization methods do not incorporate these multicriteria methods, and 
the gap in related research is significant. Discrete multicriteria combing (DMCC) tasks have high complexity in 
UAV systems, and the level of evaluation beyond mere determination of costs indicates inevitable coordination 
between executive and planning components. Common methods lack the ability to consider critical values and 
find trade-offs between different performance criteria, which often leads to suboptimal solutions that cannot 
be applied in real settings. Unaccounted issues can cause researchers to propose control systems that perform 
well in hypothetical situations but do not consider their limits during circumnavigation UAV tasks requiring 
dynamic, multifaceted demands.

However, recent studies must fully consider the complex trade-off that underpins UAV control optimization. 
Since their ability to address competing objectives, assign meaningful weights to performance criteria, and 
evaluate solutions in a multidimensional space are very limited, normal optimization methods cannot achieve 
the desired balance. This has resulted in a significant gap in the field, which requires researchers to explore 
traditional techniques and adopt more advanced techniques, such as CRITIC and TOPSIS. The application of 
these methods to UAV control systems should enable the system to be more accurately tuned to the complex and 
often conflicting demands of real-world applications so that UAVs can perform the necessary stability, precision 
and adaptability required for tasks of DMCC.

The main contributions of this study are two main areas: UAV control and optimization and the specific area 
of multicircular flight paths. The key contributions and novelty of this research are as follows:

	1.	 This study develops the HESPSOALO algorithm, a hybrid of PSO and ALO with the Eagle strategy, to opti-
mally tune FOPID control parameters for effective UAV control in dynamic settings.

	2.	 The hybrid algorithm improves UAV multicircular flight control, optimizing parameters (Kp, Ki, Kd, λ, 
and µ) for better stability, accuracy, and disturbance rejection.

	3.	 MCDM techniques (CRITIC and TOPSIS) are applied for an objective evaluation of control strategies, en-
suring robust comparisons across stability, precision, and robustness metrics.

	4.	 The FOPID-based HESPSOALO outperforms other methods (e.g., FOPID, HESPSOALO base, HPSOGWO, 
HGWOALO) in minimizing error and enhancing system response in demanding UAV conditions.

	5.	 This study introduces fractional order dynamics (λ, µ) for UAV control, enhancing performance under com-
plex conditions by optimizing disturbance and uncertainty handling.

	6.	 This research provides practical advancements for industries reliant on UAV precision, such as logistics, agri-
culture, and infrastructure inspection. The optimized FOPID-based HESPSOALO control system enhances 
reliability, reduces maintenance needs, and extends UAV operational life, supporting broader UAV adoption 
in demanding environments through improved stability and energy efficiency.

There are five sections to this article. The multicircle circumnavigation problem with a moving target and its 
solutions are explained in the second section. The third section explains the proposed methodology, which 
introduces three hybrid optimization algorithms based on the FOPID controller. The results are presented and 
discussed in Section four. Section five concludes with a discussion of its limitations and future work.

UAV model and derivations
This work investigates a multicircle circumnavigation problem with a moving target, and a preset formation of 
N UAVs is considered in the cluster, as shown in Fig. 1.

Within the X–Y earth-fixed reference, the position of the i-th UAV is denoted by pi =
[

xi

yi

]
. Equations (1), 

(2), and (3) show how the kinematics of the i − th UAV are expressed20–23:

	
pi =

[
xi

yi

]
= vi

[ cos θi

sin θi

]
� (1)

	 θi = ri� (2)

	
pi =

[
xi

yi

]
= vi

[ cos ri

sin ri

]
� (3)
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where the angular rate and velocity are indicated appropriately, ri denotes the linear component, and vi > 0 
indicates the heading angle. 0 < vi ∼ vmax and rmin ri ∼ rmax are the UAV states in which vmax represents 
the maximum velocity and where rmin and rmax are the lower and upper bounds of the angular rate, 

respectively. For input, there is an angular rate ri and a bounded and measurable velocity vi24. Equation (4)25,26 

expresses the kinematics of the moving target, pi =
[

xi

yi

]
.

	
pT = vT =

[
vxT

vyT

]
� (4)

where vT =
[

vxT

vyT

]
, ∥ vT ∥≤ zT  is a positive constant and vT  is the target velocity. It is assumed that vT  

and its derivative are bounded and that there is an upper bound on vT  because of the maneuvering constraints.
Several UAVs are recommended. The ultimate control goal, as stated in Eq.  (5), is to force all UAVs to 

evolve along a predetermined circular trajectory and maintain a desired neighboring angular spacing if target 
information is available to all of them.

	 T = Tmax · e−k·d� (5)

where d is the displacement from the equilibrium position, T  is the tension in the circle, Tmax is the maximum 
tension capacity, and k is a constant that represents the circular stiffness.

For Undirected Topology UAVs, this section provides a distributed multicircular circumnavigation control. 
suitable angular spacing and the corresponding control mechanism27,28.

Newton’s second law and the Euler equations for rigid body motion can be used to determine the translational 
and rotational movements of a multicircular UAV. The rotational Eq. (6) that follows:

	

{
mv̇f = Rb · FT + Ff + mg + T

M0 = Iω̇b + ωb × (Iωb) � (6)

where I is the inertia; mg is the weight of the UAV system; T is the tension from the multicircular and tensor of 
the multicircular UAV; ωb =

[
ψ̇, θ̇, φ̇

]
T  is the angular velocity of the multicircular UAV; the yaw pitch and roll 

angles are represented by ψ, θ, and φ, where m is the mass of the multicircular UAV; vf = [ẋ, ẏ, ż], x, y, and z 
are the positions of the UAV in three directions; Re b is the rotation matrix; and M0 is the total moment on the 
multicircular UAV29.

Multiple types of tension, aerodynamic drugs, and gravity are the primary complex forces at work. In this 
work, a "concentrated mass‒lightweight rod" model is used to establish the tether model, considering the impact 
of the tether on the UAV’s balance. Considering that multicircular UAVs usually operate in favorable weather 
conditions, we ignore resistance interference with multicircular UAVs30.

Considering that the multicircular element experiences Ti and has a length of ds. Additionally, assuming that 
the tether is in contact with the earth tension indicated by T0 and Tn, the motor is at point O and the UAV is at 
point On. The equation of balance for the I-th multicircular segment is displayed in Eq. (7)31:

	

{
Tisin (αi) − Ti−1sin (αi−1) = ϵ ds
Ticos (αi) = Ti−1cos (αi−1) � (7)

Fig. 1.  A geometric illustration of cooperative circular enclosing.
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where αi is the included angle between the i-th segments and the x-axis and where ε is the gravity per unit 
length of the multicircular, which is dependent on the material of the tether32. Figure 2 depicts the geometric 
correlation between a target and UAVs.

Owing to the symmetry of the force of the cable in the x and y directions, we convert three-dimensional 
tether modeling to two-dimensional modeling because of the symmetry of the force of the cable in the x and y 
directions. Two-dimensional space is viewed from two-dimensional space. The multicircular does not exhibit 
any vertical protrusions along the y-axis. According to dz, we can determine the values of x and z. These values 
are derived from Eq. (8)33.

	




x = Tncos(αn)
ϵ

ln

(√
1 +

(
tan(αn)+Sϵ
Tncos(αn)

)
/ (sec (αn) + tan (αn))

)

z = Tncos(αn)
ϵ

√
1 +

(
tan(αn)+Sϵ
Tncos(αn)

)
− Tn

ϵ

� (8)

The lengths in the x- and z-axes correspond to the drone’s position with respect to the motor, and the extended 
length S of the multicircular is considered. The formulas allow us to compute Tn and n, which in turn allows 
us to calculate the tension at the point where the multicircular and UAV connect. As a result, tension T has the 
following Eq. (9)34:

	
T =

[
Tx

Ty

Tz

]
= Tn

[
cos (λ1) cos (λ2)
cos (λ1) cos (λ2)

sin (λ1)

]
� (9)

We now address coordinate transformation. The angle between the tether’s projection in the XY plane and the 
plane of X is λ2. The kinematic relationships of multicircular UAVs are described via the Earth-fixed coordinate 
system. It is common practice to use the body coordinate systems.

B = (Xb, Y b, Zb) and E = (Xe, Y e, Ze). Equation (10) presents the rotation matrix from the Earth-fixed 
coordinate system to the body coordinate system35:

	
TRb =

[
cos (θ) cos (ψ) cos (ψ) sin (θ) sin (ϕ) − sin (ψ) cos (ϕ) cos (ψ) sin (θ) cos (ϕ) + sin (ψ) sin (ϕ)
cos (θ) sin (ψ) sin (ψ) sin (θ) sin (ϕ) + cos (ψ) cos (ϕ) sin (ψ) sin (θ) cos (ϕ) − cos (ψ) sin (ϕ)

− sin (θ) cos (θ) sin (ϕ) cos (θ) cos (ϕ)

]
� (10)

where S and C stand for the trigonometric functions sin and cos, respectively. The yaw, pitch, and roll angles of 
the multicircular UAV are denoted by ψ, θ, and φ, respectively36. Figure 3 presents the transforming multicircular 
UAV position diagram:

Equation (11) uses the rotation matrix Reb to express the lift force (FT) produced by the rotating rotors.

	
FT = Rb

0
[0]
1

4∑
i=1

Ctω
2
i � (11)

Let Ct stand for the motor, Reb for the rotation matrix from the body coordinate system to the Earth-fixed 
coordinate system, and lift coefficients. The rotational speed of the four rotors is ωi (i = 1, 2, 3, 4).

The system’s geometry is altered by the swinging motion of the mechanical arm when the multicircular UAV 
grasps fruit. Moreover, the total mass of the multicircular UAV changes once it grasps the target object. As a 

Fig. 2.  The geometric relationship between a UAV and a target.
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result, the inertia tensor matrix’s apparent physical transformation is observed. Equation (12) illustrates how the 
grasping state causes a shift in the center of gravity, which changes the inertia matrix37:

	
I =

(
Ix0 + γx 0 0

0 Iy0 + γy 0
0 0 Iz0 + γz

)
� (12)

Using the rotation matrix and the inertia tensor matrix as our guides, we can determine the equations 
Ix = Ix0 + γx, Iy = Iy0 + γy, and Iz = Iz0 + γz. Which represents the correction made for the 
discrepancy between the inertia at the grasping operation and the initial inertia tensor.

The rolling, pitching, and yawing moments brought about by the propellers’ rotation are then added together 
to define the total lift, or U1. The expressions in Eq. (13) are as follows38:

	




U1 = Ct

(
ω2

1 + ω2
2 + ω2

3 + ω2
4
)

U2 =
√

2Ctl
(
ω2

1 − ω2
2 + ω2

3 − ω2
4
)

U3 =
√

2Ctl
(
ω2

1 − ω2
2 + ω2

3 − ω2
4
)

U4 = Cm

(
ω2

1 − ω2
2 + ω2

3 − ω2
4
)

� (13)

where ωi (i = 1, 2, 3, 4) is the rotational speed of each of the four rotors and where  is the length between the 
center of the rotor and the drive center. For the multicircular UAV, the motor lift coefficient is Ct, and the inverse 
torque scaling coefficient is Cm. The nonlinear dynamics model of the operational multicircular UAV is shown 
below, combining the previously presented analysis with Eq. (14)39:

	





ẍ = 1
m

[U1 (−CψCϕSθ + SψSθ) − T Cλ1 Cλ2 − kf ẋ]
ÿ = 1

m
[U1 (−SψCϕSθ − CψSϕ) − T Cλ1 Cλ2 − kf ẏ]

z̈ = 1
m

[U1 (−CθCϕ) − T Sλ1 − kf ż − mg]
ψ̈ = Iy−Iz

Ix
θ̇ϕ̇ + Ir θ̇Ω

Ix
+ lU2

Ix

θ̈ = Iz−Ix
Iy

ψ̇ϕ̇ + Irψ̇Ω
Iy

+ lU3
Iy

ϕ̈ = Ix−Iy

Iz
ψ̇θ̇ + U4

Iz

� (14)

The rotor’s rotational inertia (Ir) is the coefficient of air resistance, the angles between the top end of the 
multicircular plane and the XOY plane and the X-axis plane are, respectively, and the UAV’s rotational speed is 
equal to ω1 + ω2 + ω3 + ω440–42.

The arm’s relatively high moment of inertia allows the changes to the body, rotor, and motor to be ignored. 
Thus, Eqs. (15) and (16) can be used to express the offset of the multicircular UAV’s center of gravity position, 
denoted by rC43:

Fig. 3.  Transforming multicircular UAV positions.
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


ẍ = 1
m

[U1 (−CψCϕSθ + SψSθ) − T Cλ1 Cλ2 − kf ẋ]
ÿ = 1

m
[U1 (−SψCϕSθ − CψSϕ) − T Cλ1 Cλ2 − kf ẏ]

z̈ = 1
m

[U1 (−CθCϕ) − T Sλ1 − kf ż − mg]
ψ̈ = Iy−Iz

Ix
θ̇ϕ̇ + Ir θ̇Ω

Ix
+ lU2

Ix

θ̈ = Iz−Ix
Iy

ψ̇ϕ̇ + Irψ̇Ω
Iy

+ lU3
Iy

ϕ̈ = Ix−Iy

Iz
ψ̇θ̇ + U4

Iz

� (15)

	
rC = ma (l1 − l0) + (M − ma) l1

M
� (16)

Here, M is the total mass of the multicircular UAV, ma is the total mass of the four arms, and l0 is the length of the 
arms before deformation. Let ΔI stand for the rotational inertia change, which is expressed as follows in Eq. (17):

	 ∆I = ma(r − rc)2� (17)

Equation (18) provides us with a new expression for the inertia matrix (I ′).

	
I ′ =

[
Ix − ∆I 0 0

0 Iy − ∆I 0
0 0 Iz − ∆I

]
� (18)

Equation (19) expresses how the quadcopter’s lifting arms fold to form a “bowl”-shaped multicircular unmanned 
aerial vehicle system. The model is significantly impacted by the power produced by the spinning of the four 
rotors. Under these conditions, the thrust generated by the rotating propellers modifies the attitude and balance 
of the thrust and torque of the multicircular UAV. Changes in Fi result in variations in the total lift force U1, 
which is consistent with the objectivity principles of balance44.

	
U1′ =

4∑
i=1

Ctω
2
i sin (∆σ)� (19)

With its arms bent at an angle to the horizontal and in a stable hovering position, the UAV folds its arms 
without affecting torque balance toward the ground. Thus, the folding deformation can be roughly interpreted 
as a telescopic change in arm length. The matrix of inertia can be calculated via the change in arm length, 
l2 = l0sin(∆δ). The derivation of motions can be expressed in Eqs. (20–45)1.

	

[
cos θ1 cos θ2 sin θ3
−sinθ1 cos θ2 −sinθ3

0 0 cos θ3

]
� (20)

	

[
cos θ1 cos θ2 sin θ3
−sinθ1 cos θ2 −sinθ3

0 0 cos θ3

]
� (21)

	 rg + eRe1 = rg (cos (θ) cos (ϕ) e1 + sin (θ) e2 + sin (ϕ) cos (θ) e3) + eRe1� (22)

	
a = g

R

(
d

dt
(cos (θ) cos (ϕ)) − 2 d

dt
(sin (θ)) − d

dt
(cos (θ) cos (ϕ) + sin (θ) sin (ϕ))

)
� (23)

	
a = g

r

(
d

dt
sin (θ) + 2 d

dt
(cos (ϕ) cos (θ))

)
� (24)

	
ar = d2

dt2 (sin (θ) cos (ϕ))� (25)

	

[
cos θ1 cos θ2 sin θ3
−sinθ1 cos θ2 −sinθ3

0 0 cos θ3

]
� (26)

	 rg + eRe1 = rg (cos (θ) cos (ϕ) e1 + sin (θ) e2 + sin (ϕ) cos (θ) e3) + eRe1� (27)

	
a = g

R

(
d

dt
(cos (θ) cos (ϕ)) − 2 d

dt
(sin (θ)) − d

dt
(cos (θ) cos (ϕ) + sin (θ) sin (ϕ))

)
� (28)

	
a = g

r

(
d

dt
sin (θ) + 2 d

dt
(cos (ϕ) cos (θ))

)
� (29)

	
ar = d2

dt2 (sin (θ) cos (ϕ))� (30)
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[
cos θ1 cos θ2 sin θ3
−sinθ1 cos θ2 −sinθ3

0 0 cos θ3

]
� (31)

	 rg + eRe1 = rg (cos (θ) cos (ϕ) e1 + sin (θ) e2 + sin (ϕ) cos (θ) e3) + eRe1� (32)

	
a = g

R

(
d

dt
(cos (θ) cos (ϕ)) − 2 d

dt
(sin (θ)) − d

dt
(cos (θ) cos (ϕ) + sin (θ) sin (ϕ))

)
� (33)

	
a = g

r

(
d

dt
sin (θ) + 2 d

dt
(cos (ϕ) cos (θ))

)
� (34)

	
ar = d2

dt2 (sin (θ) cos (ϕ))� (35)

	 X = R1cos (θ) − R2sin (θ)� (36)

	 Y = −R1sin (θ) − R2cos (θ)� (37)

	
wi = (yi − yT ) (xi − xT ) − (xi − xT ) (yi − yT )

(xi − xT )2 + (yi − yT )2 � (38)

	
(vT )T (k (ri − rdi) ϕi + vT rdi (u + ewi) Aϕi)T

A (pT − pi)
= keriϕi + rdi (6 + ewi) (Aϕi)T

ri

� (39)

	
Aϕi = rdi (6 + ewi)

ri
= 6 + ewi − eri (6 + ewi)

ri
� (40)

	
ṗbT i = bvT i − a1σ(b0

i (pbT i − pT ) +
N∑

j=1

aij (pbT i − pbT j))m − b1σ(b0
i (pbT i − pT ) +

N∑
j=1

aij (pbT i − pbT j))n� (41)

	
v̇bT i = −a1σaij (vbT i − vbT j)) − b1σ(b0

i (vbT i − vT ) +
N∑

j=1

aij (vbT i − vbT j))n − l1sign(b0
i (vbT i − vT ) +

N∑
j=1

aij (vbT i − vbT j))� (42)

	
ṗT i = vT i − a1σaij (pT i − pT j)) − b1σ(b0

i pT i +
N∑

j=1

aij (pT i − pT j))n� (43)

	
v̇T i = −a1σ(b0

i vT i +
N∑

j=1

aij (vT i − vT j))m − b1σ(b0
i vT i +

N∑
j=1

aij (vT i − vT j))n − l1sign(b0
i vT i +

N∑
j=1

aij (vT i − vT j))� (44)

	

ėri = ṙi = (pT )T − (pi)T

(pT − pi) ri
= (pT )T − uT iϕi

(vT )T

(
k

(
‘
r
i

−rdi

) ‘
ϕ
i

+
‘
v

T i
rdi

(
6 +

‘
e wi

)
A

‘
ϕ
i

)T � (45)

Methodology
Our methodology is divided into three phases, as shown in Fig.  4, which are centered around the UAV 
multicircular system design and FOPID controller in phase one; hybrid optimization for controller parameter 
tuning, such as FOPID-based HESPSOALO, FOPID-based HPSOGWO, and FOPID-based HGWOALO with 
the pseudocode of these proposed algorithms and their benchmark functions in phase two; and performance 
evaluation via multicriteria decision making under real-world conditions, such as the CRITIC method for 
weights and the TOPSIS method for ranks of UAV circumnavigation, which are all included in our detailed 
explanations of each step.

Phase one: UAV multicircular system
A 3D plane can be used to simulate the motion of the UAV, depending on the requirements of our simulation. 
The positions of the UAVs are represented by vectors in Cartesian coordinates. In a 2D model, Eq. (46) indicates 
the position of a UAV i at time (t)45:

	
pi (t) =

[
xi (t)
yi (t)

]
� (46)

where xi (t) and yi (t) represent the positions of the UAV along the x- and y-axes, respectively, at time t. The 
velocity of each unmanned aerial vehicle is also expressed as a vector via Eq. (47):

	
vi (t) =

[
vx,i (t)
vy,i (t)

]
� (47)

Scientific Reports |        (2025) 15:18962 10| https://doi.org/10.1038/s41598-025-01508-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


The angle formed by the velocity vector and the y-axis, known as the heading angle, or θi (t), determines 
the direction of movement of the UAV. Each UAV must circle a central target in a circular path to complete a 
circumnavigation. Equation (48) provides the desired position of UAV U  on the circle at time t46:

	
pi,des (t) = pc + ri

[ cos (ωit)
sin (ωit)

]
� (48)

The position of the central target, or the center of the circular path, is indicated by pc47. As stated in Tables 2, 3 
and 4, the radius of UAV I’s circular trajectory is represented by ri. The compensation equations in Eqs. (49), 
(50), (51), (52), and (53), respectively, are as follows:

Fig. 4.  The proposed methodology phases.
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H (e) =




β1 −1 0
β2

mfal(e1,A,M)
e1

0 1
β3

mfal(e2,A,M)
e2

0 0


� (49)

	
D =

[
1 β2F1

B+ϵ1
− η

− β2F1
B−ϵ1

η 1
B+ϵ2

η − 1
B−ϵ2

η

]
� (50)

	
V (t) =

t

∫
0

(DH (e) e, ė) dt + C0� (51)

	
V (t) =

t

∫
0

(DH (e) e, −H (e) e) dt + C0� (52)

	
V (t) =

t

∫
0
(H (e) e)′ · DH (e) e dt + C0� (53)

FOPID controller
The transfer function for the FOPID controller is given by Eq. (54):

	 C (s) = Kp + Kis
−λ + Kdsµ� (54)

In this case, Kp represents the proportional gain, Ki represents the integral gain, Kd represents the first 
derivative gain, λ (0 < λ < 1) represents the integration order, and μ (0 < μ < 1) represents the derivative order. The 
contributions of the fractional, integral, and proportional derivatives to the control of the UAV multicircular 
system are shown in this equation.

To noninteger (fractional) orders, fractional calculus extends conventional integer-order differentiation and 
integration. Equation (55) represents the general fractional derivative operator as follows48:

	
dµ

dtµ
f (t)� (55)

The fractional derivative operator is sµ, and the fractional integral operator is s−λ. Equation (56) expresses the 
overall control law in the time domain:

	
u (t) = Kpe (t) + Ki

d−λ

dt−λ
e (t) + Kd

dµ

dtµ
e (t)� (56)

Parameter name Values

Initial states of positions (m) p1(0) = [50; 50] T; p2(0) = [100; 200] T; p3(0) = [100; 100] T; p4(0) = [300; 250] T; 
p5(0) = [100; 100] T; p6(0) = [200; 100] T; p7(0) = [200; 200] T; p8(0) = [200; 100] T

Initial states of velocities (m/s) v1(0) = [100; 100] T; v2(0) = [50; 100] T; v3(0) = [100; 100] T; v4(0) = [100; 50] T; 
v5(0) = [100; 100] T; v6(0) = [200; 100] T; v7(0) = [200; 200] T; v8(0) = [200; 100] T

Table 4.  Initial conditions of distributed fixed-time observers with elevated values.

 

Parameter name Values

Initial positions of UAVs (m) p1(0) = [50; 50] T; p2(0) = [50; 60] T; p3(0) = [100; 100] T; p4(0) = [200; 0] T; 
p5(0) = [50; 150] T; p6(0) = [100; 200] T; p7(0) = [50; 300] T; p8(0) = [100; 100] T

Initial heading angles of UAVs (rad) θ1(0) = 0.3957; θ2(0) = π + 0.0977; θ3(0) = 0.4259; θ4(0) = 0.7771; 
θ5(0) = π + 0.3685; θ6(0) = − 0.5923; θ7(0) = − 0.7151; θ8(0) = 1.1425

Initial velocities of UAVs (m/s) v1(0) = [2; 2] T; v2(0) = [1; 2] T; v3(0) = [1; − 1] T; v4(0) = [2; 1] T; v5(0) = [− 2; 
− 2] T; v6(0) = [− 3; − 2] T; v7(0) = [3; 3] T; v8(0) = [3; − 2] T

Table 3.  Initial conditions of distributed observers with a fixed time.

 

Parameter name Values

Initial positions of UAVs (m) p1(0) = [− 50, − 50] T; p2(0) = [50, − 60] T; p3(0) = [− 100, − 100] T; p4(0) = [− 200, 0] T; 
p5(0) = [− 50, 150] T; p6(0) = [− 100, 200] T; p7(0) = [− 50, 300] T; p8(0) = [− 100, − 100] T

Initial heading angles of UAVs (rad) ψ1(0) = − 0.3957; ψ2(0) = π + 0.0977; ψ3(0) = 0.4259; ψ4(0) = 0.7771; ψ5(0) = π + 0.3685; 
ψ6(0) = − 0.5923; ψ7(0) = − 0.7151; ψ8(0) = 1.1425

Table 2.  Initial conditions of the UAVs.
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where Kpe (t) is the equivalent contribution, Ki

t

∫
0

e (τ) dτλ uses a fractional order to integrate the error, and 

Kdsµe (t) distinguishes the mistake using the fractional order.

Phase two: optimization algorithms
In this phase, we apply advanced hybrid optimization algorithms to optimize the control parameters for UAVs 
operating within a distributed multicircular circulation-avigation control (DMCC) framework. The goal is to 
minimize errors in position, velocity, and orientation (yaw, pitch, roll) during UAV flight by tuning the control 
parameters for both PID and fractional-order PID (FOPID) controllers.

The optimization algorithms used in this phase are FOPID-based HESPSOALO, FOPID-based HPSOGWO, 
and FOPID-based HGWOALO. These algorithms further ensure that they are robust algorithms such that 
both exploration and exploitation techniques are utilized to search for optimal parameters. Each algorithm is 
discussed in detail with the corresponding equations49:

The parameters are optimized for UAV control: the proportional gain (Kp), integral gain (Ki), and derivative 
gain (Kd) for the PID controllers; for the FOPIDs, there are additional fractional order components (λ and µ). 
These parameters are indispensable for controlling the UAVs precisely and stably to move along the desired 
circular paths. The objective function to be optimized seeks a low overall performance of the UAV on the basis 
of positional, velocity, and angular errors. The objective function J  is given by Eq. (57):

	
J = wp

n∑
i=1

(PosError (i))2 + wv

n∑
i=1

(VelError (i))2 + wa

n∑
i=1

(AngError (i))2� (57)

where wp, wv and wa are the weights assigned to the position error, velocity error and yaw, pitch and roll, 
respectively. The errors are measured for each UAV i over sets of time intervals. The objective function we would 
like to minimize is related to the control parameters, as are the optimization algorithms.

FOPID-based HESPSOALO
The FOPID-based HESPSOALO algorithm is a hybrid approach that combines three key components: the global 
exploration solved via the Eagle strategy (ES) for the ES, particle swarm optimization (PSO) for population-
based optimization and the ant lion optimizer (ALO) for the refinement of the solutions during exploitation. The 
hybrid method is designed to search for the solution space thoroughly and structure the results.

First, among all the strategies, there is global exploration that emulates the Eagle strategy (ES), which is 
applied as the first stage of HESPSOALO. Levy flights, a type of random walk where long jumps are characterized, 
are utilized in the Eagle strategy. With the addition of Levy flights, the algorithm’s exploration capability is 
improved such that the particles (candidate solutions) jump to faraway regions of the search space. The position 
of a particle after a Levy flight is updated via Eq. (58):

	 Xt+1 = Xt + α · |Vt|
1
β σ� (58)

where Xt is the current position, α is a scaling factor, σ is a normally distributed random variable, and β 
controls the jump distribution. Levy flight ensures that the particles explore large portions of the solution space 
to avoid becoming trapped in a local minimum.

Following the exploration phase, the algorithm transitions into the exploitation phase, which uses both 
particle swarm optimization (PSO) and the ant lion optimizer (ALO). In the PSO component, particles move 
through the search space by adjusting their positions and velocities on the basis of their personal best positions 
and the global best position within the swarm. The velocity of each particle is updated via Eq. (59)50,51:

	 vi,j (t + 1) = w · vi,j (t) + c1 · r1 · (pbest,j − xi,j (t)) + c2 · r2 · (gbest,j − xi,j (t))� (59)

where vi, j (t) is the velocity of particle i in dimension j at time step t, w is the inertia weight controlling the 
influence of the previous velocity, c1 and c2 are cognitive and social acceleration coefficients, r1 and r2 are 
random numbers between 0 and 1, and pbest, j and gbest, j represent the particle’s personal best position and 
the global best position in dimension j, respectively. The position of the particle is then updated via Eq. (60):

	 xi,j (t + 1) = xi,j (t) + vi,j (t + 1)� (60)

Simultaneously, the ant lion optimizer (ALO) is applied to refine the search process by simulating the hunting 
mechanism of ant lions. The ALO random walk model of prey movement within the search space is presented 
in Eq. (61):

	 Xt+1 = Xt + (r1 − r2)� (61)

Here, r1 and r2 are random numbers representing the prey’s movement, and Xt is the current position of the 
ant lion. The ability of ALO to trap and refine solutions ensures that the parameters are fine-tuned during the 
exploitation phase, providing a strong local search capability that complements the global exploration of PSO. 
The pseudocode for Algorithm 1 is as follows:
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Algorithm 1.  Hybrid Eagle Strategy Particle Swarm Optimization Ant Lion Optimizer (HESPSOALO)

FOPID-based HPSOGWO
The gray wolf optimization (GWO) algorithm is integrated with particle swarm optimization (PSO) to generate 
the FOPID-based HPSOGWO algorithm. We design this hybrid approach to combine the fast convergence of 
PSO and efficient exploration in GWO.

The gray wolf optimization (GWO) algorithm is inspired by the social hierarchy structure and hunting 
behavior of gray wolves. In GWO, the population of wolves is divided into four groups: the alpha, beta, delta, 
and omega modules. The alpha wolves represent the best solution, followed by the beta and delta wolves, who 
represent almost equally bad solutions; finally, the rest of the population consists of the omega wolves. At each 
iteration, the alpha, beta and delta wolves work as guides to move toward the optimal solution. The position of 
a gray wolf is updated as in Eq. (62)52:

	 X (t + 1) = 3Xα + Xβ + Xδ � (62)

The alpha, beta, and delta wolves are at positions Xα, Xβ , and Xδ  The three best solutions among these wolves 
are at any iteration. The encircling behavior of the wolves is modeled via Eq. (63) and Eq. (64):

	 D = |C · Xp (t) − X (t)|� (63)

	 X (t + 1) = Xp (t) − A · D� (64)

These are equations (with subscript p on Xp (t) for the position of the prey (optimal solution), coefficient vec-
tor A, coefficient vector C controlling the wolves’ movements, and D, the distance between the area of the prey 
and the wolf). Particle swarm optimization (PSO) is used after GWO narrows it down to search. PSO adjusts 
the positions and velocities of the particles on the basis of their own experience (personal best) and the swarm’s 
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experience (global best). This hybridization ensures that the algorithm balances exploration and exploitation, 
ultimately leading to more accurate tuning of the UAV control parameters53. The pseudocode for Algorithm 2 
is as follows:

Algorithm 2.  Hybrid Particle Swarm Optimization-Gray Wolf Optimizer (FOPID-based HPSOGWO)

FOPID-based HGWOALO
HGWOALO is a hybrid optimization algorithm that uses gray wolf optimization (GWO) to generate its 
population, which then undergoes the ant lion optimizer (ALO) to find its final population. The hybridization 
of this type is used to provide the optimization process with improved global exploration and local exploitation 
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abilities, making it possible to tune the control parameters for fractional-order PID (FOPID) controllers in an 
appropriate way. This optimization algorithm attempts to minimize positional, velocity and angular errors in the 
control of unmanned aerial vehicles (UAVs) via a distributed multicircular circulation control (DMCC) system.

In an FOPID controller, the control parameters to be optimized are Kp, Ki, and Kd, along with two 
additional fractional parameters, λ and μ, associated with the fractional orders of the integral and derivative 
components, respectively. The control law for an FOPID controller is expressed in Eq. (65):

	 u (t) = Kpe (t) + KiD
−λ
t e (t) + KdDµ

t e (t)� (65)

Using the assumed structure, the proportional, integral, and derivative gains, Kp, Ki, and Kd, can be combined 
with e(t) and u(t) such that u(t) is the control output associated with the error at time t. The fractional calculus 
operators for integration are Dt = −λ and Dt = µ. Having applied the HGWOALO optimization algorithm to 
minimize the errors in UAV control by varying these FOPID parameters, we hold an implementation available 
on GitHub. This algorithm operates in two main phases: for global exploration of the parameter space, an 
implementation of gray wolf optimization (GWO) is used, and for local exploitation of the parameter space, the 
ant lion optimizer (ALO) is used. This combined approach results in both a thorough search of the solution space 
and a fine-tuned parameter adjustment during exploitation. On the basis of the social hierarchy and hunting 
mechanism of gray wolves, gray wolf optimization (GWO) is introduced. In this algorithm, the population of 
wolves (candidate solutions) is divided into four types: gamma, delta, alpha, and omega wolves. The alpha, beta, 
and delta wolves represent the top three best solutions, whereas the remaining wolves (omega) explore the search 
space. The wolves surround and move toward the prey, which represents the optimal solution. The position of a 
gray wolf is updated on the basis of the positions of the alpha, beta, and delta wolves via Eq. (66):

	
X (t + 1) = 1

3 ∗ (Xα (t) + Xβ (t) + Xδ (t))� (66)

where X (t + 1) is the updated position of a gray wolf at iteration t + 1 and where Xα (t), Xβ (t), and Xδ (t) 
are the positions of the alpha, beta, and delta wolves (the best, second-best, and third-best solutions, respectively) 
at iteration t. As the ant lion refines its trap, the search space around the prey is progressively reduced, forcing 
the prey toward the optimal solution. The shrinking of the search boundaries is mathematically modeled as in 
Eq. (67)54,55:

	
I = itermax

It
, f = itermax

ft
� (67)

I and f are the bounds present for the search space, and itermax is the number of iterations. The search space 
enclosed decreases, and the prey is constrained from an optimal solution within decreasing boundaries.

As a hybrid method, FOPID-based HGWOALO is extremely powerful in that it combines the global searching 
capability of the gray wolf optimizer (GWO) and the local refinement feature of the ant lion optimizer (ALO). 
By combining this hybrid approach to explore the solution space with fine-tuning solutions toward conver-
gence to optimal control parameters, efficiency is guaranteed, whereas efforts focused on solution fine-tuning 
converge toward optimal control parameters. HGWOALO achieves an effective optimization technique to 
control DMCC systems by minimizing the objective function that measures positional, velocity, and angular 
errors. The pseudocode for Algorithm 3 is as follows:
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Algorithm 3.  FOPID-Based Hybrid Gray Wolf Optimization Ant Lion Optimizer (HGWOALO)

Benchmark functions
A set of benchmark functions was employed to evaluate the performance of our proposed optimization 
algorithms: FOPID-based HESPSOALO (Hybrid Eagle Strategy Particle Swarm Optimization Ant Lion 
Optimizer), FOPID-based HPSOGWO (Hybrid Particle Swarm Optimization‒Gray Wolf Optimization), and 
FOPID-based HGWOALO (Hybrid Gray Wolf Optimization‒Ant Lion Optimizer). The benchmark functions 
selected for our tests cover a wide range of optimization problems, testing the algorithms’ ability to find global 
minima while avoiding local optima, balancing exploration and exploitation, and handling unimodal and 
multimodal search landscapes. The algorithms were tested for their capacity to quickly converge to the global 
minimum of a smooth, convex landscape with the sphere function, which is a simple uniform function. The 
sphere function has no local minima, rendering it an ideal starting point to determine how well an algorithm 
will find its way to a minimum without the distraction of false minima. The Rosenbrock function is a harder 
function than the one given earlier because it includes a narrow, curved valley to the global minimum. Especially 
useful for testing how well your algorithms can optimize the complex landscape they travel into the global 
minimum, with that sensitivity and careful navigation around the valley. Its landscape is highly multimodal and 
is characterized by many local minima in the Ackley function. However, in the global minimum, we are in a deep 
and very narrow basin. This function measures how well the algorithms balance exploration and exploitation 
so that they are not trapped in local minima because they have no need to explore the whole global landscape. 
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In addition, a few tests, such as the Griewank function, Rastrigin function, Levi function and Booth function, 
were chosen to test the robustness and precision of the algorithms. These functions are known to be periodic, 
multimodal, and complex search spaces, which is key to testing the convergence of the algorithms to the global 
optimum as fast as possible. For our evaluations, we ran each algorithm through these benchmark functions to 
assess their performance on the basis of several key metrics: speed of convergence, precision in the search for the 
global minimum, and robustness in escaping from local minima56. We list the detailed setup and specifications 
of each benchmark function along with its parameters in Table 5.

Phase three: multi-criteria decision making
FOPID-based HESPSOALO, FOPID-based HPSOGWO and FOPID-based HGWOALO are used to optimize 
the UAV control parameters. To select, evaluate and rank the alternatives, MCDM is applied. This phase considers 
the inherent trade-offs between multiple performance metrics and translates to the selection of the best control 
strategies for a more comprehensive evaluation. There are two stages of this applied model. Stage I shows the 
weights of the criteria based on CRITIC. Stage II prioritizes the alternatives via TOPSIS.

The CRITIC method
The CRITIC is a reliable objective weighting technique. It measures the criteria’s weight according to the 
contrast intensity of a criterion and the degree of conflict between the criteria. The contrast intensity refers 
to the difference between the values of a criterion in each evaluation scheme. The conflict degree measures 
the similarity of information between different criteria. A criterion with a higher contrast intensity and higher 
degree of conflict should have a larger weight. The main advantage of CRITIC lies in its ability to detect the 
interdependencies among the criteria, enhancing the assessment of their relative significance57.

Given the decision matrix “D” with n alternatives and m criteria, rij ∈ R is the rating of the ith alternative 
for the jth criterion, where R is the set of real numbers as in Eq. (68).

	

� (68)

Step 1 Normalize the decision matrix
For every criterion, a membership function xij  is defined that maps the value rij  to the interval [0, 1]. This 

is accomplished via the following formulas: Eq. (69) and Eq. (70).

	
xij =

rij − r−
j

r+
j − r−

j

, for benefit criteria,� (69)

	
xij =

rij − r−
j

r+
j − r−

j

, for benefit criteria,� (70)

Equation (71) depicts r
+
j = max

i
rij , and r−

j = min
i

rij .

Benchmark function Algorithm Dimensionality Search agents Search range

f1 (x, y) = x2 + y2 FOPID-based HESPSOALO 2 20 [− 5, 5]

f2 (x, y) = 20 +
(

x2 − 10 · cos (2πx)
)

+
(

y2 − 10 · cos (2πy)
)

2 20 [− 5, 5]

f3 (x, y) = −20 exp
(

−0.2
√

0.5 (x2 + y2)
)

− exp (0.5 (cos (2πx) + cos (2πy))) + 20 + e

2 20 [− 5, 5]

f4 (x, y) = 1 + x2+y2
4000 − cos (x) · cos

(
y√

2

)
+ 20 + e FOPID-based HPSOGWO 2 20 [− 5, 5]

f5 (x, y) = sin2 (3πx) + (x − 1)2
(

1 + sin2 (3πy)
)

+ (y − 1)2
(

1 + sin2 (2πy)
) FOPID-based HGWOALO 2 20 [− 10, 10]

f6 (x, y) = (1.5 − x + xy)2 + (2.25 − x + xy
2)2

+ (2.625 − x + xy
3)2

2 20 [− 5, 5]

f7 (x, y) = (x + 2y − 7)2 + (2x + y − 5)2 2 20 [-5, 5]

f8 (x, y) = (x2 + y − 11)2 + (x + y2 − 7)2 General (All algorithms) 2 20 [-5, 5]

f9 (x, y) = 2x2 − 1.05x4 + x6
6 + xy + y2 2 20 [-5, 5]

Table 5.  Benchmark functions for our proposed algorithms.
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� (71)

Step 2 Computing the degree of conflict
Pearson’s correlation coefficient between the jth criterion and the kth criterion is computed via Eq. (72).

	

P COR (Cj , Ck) =
∑n

i=1 (xij − xj) (xik − xk)√∑n

i=1 (xij − xj)2 ∑n

i=1 (xik − xk)2
,� (72)

where xj = 1
n

n∑
i=1

xij  is the mean of the alternatives’ ratings for the jth criterion and where xk = 1
n

n∑
i=1

xik  is 

the mean of the alternatives’ ratings for the kth criterion.
As the correlation coefficient decreases, the degree of conflict increases. Hence, the degree of conflict for each 

criterion is calculated via Eq. (73).

	
P deg (Cj) =

m∑
k=1

(1 − P COR (Cj , Ck)) .� (73)

Step 3 Compute the contrast intensity
The standard deviation of the jth criterion is calculated via Eq. (74).

	
P σj =

√∑n

i=1 (xij − xj)2

(n − 1) .� (74)

Step 4 Find the index of the criteria
The index of the jth criterion is found by multiplying (73) and (74), as expressed in Eq. (75).

	 P In (Cj) = σj ∗ deg (Cj) .� (75)

Step 5 Determine the weights of the criteria
The weights of the criteria are obtained by normalizing the indices of the criteria depicted in Eq. (76).

	
W (Cj) = In (Cj)∑m

j=1 In (Cj)
.� (76)

TOPSIS method
TOPSIS is one of the most widely applied classical MCDM methods58–69. Like CRITIC, TOPSIS is initiated by 
the normalization procedure, followed by the formulation of the weighted decision matrix. After that, the best 
and worst solutions are determined. Then, the separation measures and the relative closeness coefficient are 
calculated for each alternative. Finally, the alternatives are ranked in decreasing order. The best alternative is 
the one with the largest relative closeness coefficient. The formulas that describe the procedure are defined as 
follows.

Step 6 Form the weighted decision matrix
The weighted decision matrix is formed by multiplying the normalized evaluations by the weights of the 

criteria via Eq. (77) and Eq. (78).

	 ωij = wj ∗ xij � (77)

	

� (78)

Step 7 Determine the extreme solutions
Since Eqs. (2) and (3) are used in normalization, the extreme solutions are given as follows:
ω+

j = max
i

ωij , and ω−
j = min

i
ωij , for j = 1, . . . , m and i = 1, . . . , n

Step 8 Calculate the separation measures

Scientific Reports |        (2025) 15:18962 19| https://doi.org/10.1038/s41598-025-01508-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


The measures of separation between alternatives and the extreme solutions are computed via Eq. (79) and 
Eq. (80):

	

S+
i =

√√√√
m∑

j=1

(
ωij − ω+

j

)2
,i = 1, . . . , n� (79)

	

S−
i =

√√√√
m∑

j=1

(
ωij − ω−

j

)2
, i = 1, ..n.� (80)

Step 9 The relative closeness coefficient is calculated via Eq. (81):

	
R (Ai) = S−

i

S+
i + S−

i

� (81)

Step 10 Prioritizing the alternatives
The alternatives can be prioritized according to the descending order of the relative closeness coefficient.

Results and discussion
This section includes a detailed analysis of the optimization algorithms for the UAV multicircular control system 
as well as the benchmark function testing results and the MCDM results when the best algorithm is selected. 
Each subsection reviews in detail the performance of the algorithms in managing the UAV control system on the 
basis of the capacity to minimize the number of errors and stabilize the system.

Results of the optimization algorithms for UAV multicircular
The performance of various control algorithms was analyzed with a UAV multicircular model for disturbance 
reduction in this study. FOPID and its hybrid forms, including FOPID-based HESPSOALO, and other hybrid 
control methods, such as HPSOGWO and HGWOALO, were compared in the second case. Throughout 
this work, the goal was to evaluate how these algorithms regulate the control of UAVs in multicircular flight 
scenarios, aiming specifically to minimize positional, angular and velocity errors. The results presented in Fig. 5 
are divided into four main parts: Part (A): UAV positions over time; Part (B): relative range errors for UAVs; 
Part (C): angular errors (Yaw, Pitch, and Roll); and Part (D): overall MSE comparison for position, velocity, 
yaw, pitch, and roll. We evaluate the performance of this controller in terms of the position and velocity 
containment of the UAV by the UAVs as the proportional, integral and derivative gains are adjusted. The FOPID 
controller works with five dimensions (five controllers gain Kp, Ki, Kd, λ, and µ). While the performance 
of the FOPID controller is reasonable, compared with that of the hybrid optimization algorithms, it cannot 
produce comparable levels of positional and angular error minimization. However, we found that optimization 
was needed to improve controller performance because it could not reduce errors as effectively as the hybrid 
methods could. This study shows that HESPSOALO, which uses the FOPID as its optimizer, delivered the best 
results. The hybrid approach involving particle swarm optimization (PSO) and the ant lion optimizer (ALO) 
uses the Eagle strategy to optimize the balance between exploration and exploitation. A population size of 30 
was chosen for the algorithm, which gives a heterogeneous set of candidate solutions, and the inertia weight 
was initially set to 0.7 and decreased to 0.4. In this configuration, before iterations diverge significantly from the 
point of good solution, the algorithm has more opportunity to expand its search space or tune the best solutions. 
The control performance of the HESPSOALO algorithm was also superior to that of the other algorithms, with 
both positional and angular errors improving for all time intervals. Over tiled matrices, its ability to avoid local 
optima and efficiently traverse the solution space makes it the most effective mechanism for optimizing the 
FOPID controller in this setup. Second, FOPID + HPSOGWO was proposed, which combines the gray wolf 
optimizer (GWO) with PSO to achieve UAV control. In this hybrid method, we adopted a population size 
of 25 search agents to achieve the reinforcement of both global exploration and local exploitation. Although 
the improvement over the base FOPID was somewhat greater than that over the base FOPID, it has not yet 
improved the HESPSOALO algorithm. In terms of error minimization, HPSOGWO achieves good performance 
but occurs in local optima traps to generate larger angular errors than HESPSOALO does. Similarly, the 
FOPID + HGWOALO algorithm performs FOPID controller tuning on the basis of the strengths of GWO and 
ALO. This algorithm’s performance in controlling UAV flight for a population size of 20 and an inertia weight of 
0.6 was moderate. However, these methods are not competitive at minimizing yaw and roll errors, falling behind 
HESPSOALO and HPSOGWO. The hybrid structure of HGWOALO permitted it to perform significantly better 
than the base FOPID controller, but it still faced some challenges in maintaining the level of precision of the top-
performing algorithms. The HESPSOALO base algorithm was finally used without integration into the FOPID 
controller to serve as the baseline for comparison. On its own, the base HESPSOALO, with a population size of 
30 and the same parameter configuration, revealed very strong results. However, further integration with the 
FOPID controller demonstrated the power of applying optimization algorithms for tuning FOPID controller 
parameters.

In Part (A), the UAV trajectory at time points ranging from 0 to 5 s is plotted to compare each control 
algorithm with its desired trajectory. The five algorithms that were compared are the following: the FOPID 
controller, HESPSOALO base, FOPID-based HESPSOALO, FOPID + HPSOGWO, and FOPID + HGWOALO. 
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Among various controllers, the FOPID-based HESPSOALO controller achieves the most stable performance, as 
UAVs maintain their positions more accurately for all intervals of time. However, the FOPID + HGWOALO and 
HPSOGWO algorithms have a larger positional deviation—particularly at later time steps where the UAVs start 
to deviate slightly from their intended path. The hybrid HESPSOALO algorithm greatly enhances the ability 
of the FOPID controller to hold the UAV position in dynamic environments. Its hybrid structure balances 

Fig. 5.  Performance comparison of UAV control algorithms on the basis of position, range, angular error, and 
MSE.
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exploration and exploitation and improves control precision without allowing the UAVs to travel too far from 
their desired circular path.

In Part (B), the results of the relative range errors between the actual and desired UAV positions for eight 
UAVs are plotted. Range errors are measured through time, and the HESPSOALO method, which is based 
on the FOPID control method, is shown to generate the smallest range errors for these control methods. This 
algorithm has a strong ability to correct and minimize positional discrepancies during flight, but the average 
range error of this algorithm remains low throughout. However, the range errors of the base FOPID controller 
and HPSOGWO are greater than those throughout the transitions between time intervals. The superior 
performance of HESPSOALO is due to its hybrid nature. The method combines Particle Swarm Optimization 

Fig. 5.  (continued)
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(PSO) and Ant Lion Optimizer (ALO) to avoid the local optimum problem, which is a common problem in 
single-strategy algorithms. Embed in the Eagle strategy into HESPSOALO is the ability to dynamically switch 
between global exploration and local exploitation to provide precise control over the UAV’s range dynamically 
during multicircular flight.

The yaw, pitch, and roll angular errors for the eight UAVs over time are presented in Part (C). The performance 
of reducing the maximum errors in these two criteria is consistently better for the FOPID-based HESPSOALO 
than for the other control strategies. With the HESPSOALO-enhanced FOPID controller, the yaw, pitch and 
roll errors are low and stable during the entire flight duration, demonstrating that the algorithm can maintain 
UAV orientation in the presence of dynamic conditions. In contrast, the base FOPID controller and HPSOGWO 
algorithms exhibit larger angular error fluctuations, especially for the cases of pitch and roll, the objectives of 
which cannot be met by the algorithms. The angular stability improvement of HESPSOALO comes from the 
efficient tuning of the parameters of the FOPID. A hybrid method that guarantees a balanced tradeoff between 
the controller gains results in more consistent control of the UAV’s yaw pitch and roll necessary for complex 
multicircular maneuvers.

The overall mean squared errors (MSEs) for position, velocity, yaw, pitch and roll are compared for each 
control algorithm in Part (D). All MSE values are the lowest, especially in the composite categories, indicating 
that the performance in minimizing errors over multiple control dimensions is superior to that of the other 
control schemes. While performing relatively well, the FOPID controller (Base) has a higher MSE for velocity 
(especially 2nd order) and pitch, as it is not as efficient in terms of actuality in terms of filtering out fluctuations 
with respect to speed and/or orientation. The results confirm the robustness of the HESPSOALO algorithm in 
maintaining the desired position of the UAV with a small error, resulting in the smallest overall MSE for the 
position. The reason for this robustness is the hybrid structure, which constitutes the algorithm allowing it to 
maintain good control performance under changing conditions and adapt to that environment. Combining 
PSO’s exploratory phase with ALO’s exploitative phase yields a more refined control process, resulting in lower 
error over time, particularly in multidimensional control tasks such as UAV flight. The results of this work clearly 
demonstrate that the FOPID-based HESPSOALO outperforms other control strategies in UAV multicircular 
flight. This method consistently results in lower positional, angular and velocity errors because of its ability to 
fine-tune control parameters according to optimal performance. However, application findings reveal that the 
hybrid approach combining PSO, ALO and the Eagle strategy—proves particularly adept at trafficking through 
the impenetrable mazes of UAV control, dodging local optima, and delivering stable, global solutions.

A comparison of the controller parameters of the UAV multicircular system in Table 6 and Fig. 6 provides 
significant insights into the performance of diverse control methods. An evaluation of the HESPSOALO 
algorithm reveals that it outperforms the FOPID controller (Base) and the HESPSOALO (Base) algorithms in 
key control parameters such as Kp, Ki, Kd, λ, and µ. These parameters are critical for the system’s stability, 
accuracy and responsiveness during multicircular UAV flight, which demands high accuracy. The pitch control 
proportional gain Kp for the FOPID-based HESPSOALO method is 1.2769, which is lower than those of both 
the FOPID controller (Base) (1.4125) and the HESPSOALO algorithm (Base) (2.1765). The proposed hybrid 
method shows better stability while requiring less aggressive control action, which is evidenced by this reduction 
in Kp. Smooth system behavior and a reduced risk of overshoot and oscillations during pitch adjustments are 
aided by a lower Kp. The lower proportional gain allows the system to be more cautious about the errors and 
keep the system within stable control while avoiding instability for the UAV multicircular maneuvers. Finally, 
for the integral gain Ki for cumulative error correction in roll control, the proposed FOPID-based HESPSOALO 
yields a value of 0.4713 lower than those of FOPID (Base) (0.4926) and HESPSOALO (Base) (0.5632). The Ki is 
only moderately reduced by the correction, so the system quickly corrects errors without triggering long-term 
instability. A slight reduction in the integral action permits the system to avoid excessive build-up of corrective 
action, which may result in unstable oscillations or perturbations to an already stable system. Additionally, this 
mixture between the speed of error correction and the stability of the FOPID-based HESPSOALO is a better 
choice for precise and stable roll control. In the FOPID-based HESPSOALO method, the derivative gain for 
yaw control equals Kd = 0.1824, the smallest among all methods considered. These are significant reductions 
from both the FOPID (Base) value of 0.2035 and the HESPSOALO (Base) value of 0.2310. If the system is less 
sensitive to sudden changes in the error, then the system will have a less sensitive response and fewer damping 
oscillations. This leads to more stable control dynamics in the FOPID-based HESPSOALO method, which, 
on the one hand, contributes to lower derivative gain, leading to fewer oscillations during yaw adjustments 
and helping the flight remain oriented in multicircular UAV flight. Both the pitch and yaw fractional order 
parameters λ and the yaw fractional order parameter µ are also improved in the FOPID-based HESPSOALO 
algorithm. Compared with both FOPID (Base) (0.2938) and HESPSOALO (Base) (0.2840), λ has a greater value 
of 0.3194, which suggests that it can deal better with long-term disturbances in pitch control. Similarly, µ in 

Controller method Kp(Pitch) Ki( Roll) Kd( Yaw) λ( Pitch) µ( Yaw)

FOPID controller (Base) 1.4125 0.4926 0.2035 0.2938 0.3241

HESPSOALO algorithm (base) 2.1765 0.5632 0.2310 0.2840 0.3124

FOPID based HESPSOALO 1.2769 0.4713 0.1824 0.3194 0.3532

FOPID based HPSOGWO 1.3580 0.4989 0.2150 0.3047 0.3385

FOPID based HGWOALO 1.3972 0.4854 0.2234 0.3109 0.3461

Table 6.  Comparative analysis of controller parameters for UAV multicircular (evaluation decision matrix).
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FOPID (Base) and HESPSOALO (Base) are 0.3241 and 0.3124, respectively, whereas for the proposed method, it 
is 0.3532. The proposed method exhibits more robust behavior to disturbances and uncertainties represented by 
these higher fractional order parameters, predicting higher fractional order capability to control both pitch and 
yaw dynamics. By improving the system’s ability to reject complex and unpredictable behaviors, increasing the 
values of λ and μ improves the system’s disturbance rejection and overall control stability.

Fig. 6.  Overall comparative radar analysis of controller parameter tuning using various optimization 
algorithms for UAV multicircular flight control.
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On the basis of our analysis, the proposed method, which is based on the FOPID HESPSOALO algorithm, 
outperforms FOPID (Base) and HESPSOALO (Base) in terms of both control performance and stability. Of 
particular interest are the tuning of the key parameters, such as Kp, Ki, Kd, λ, and finally µ, which play a major 
role in controlling the multicircular flight of UAVs.

The performance of the proposed FOPID-based HESPSOALO algorithm shows good proportional gain for 
pitch control (Kp). In particular, it achieves nearly 9.6% savings over the FOPID (Base) and a considerable 41.3% 
savings over the HESPSOALO (Base). The improved Kp shows that in the proposed method, the system is more 
stable and yet responsive while performing pitch control. The proposed method helps reduce the aggressiveness 
of the control action and smoother system behavior with the minimum risk of overshooting because of the 
corresponding lower Kp value. Maintaining the stability of the UAVs is crucial for their stability in the case 
where necessary adjustments are needed in multicircular paths; hence, this is critical.

For the same integral gain Ki, which is used to correct the accumulated errors in the roll, the proposed 
method provides a 4.3% improvement over the FOPID (Base) and a 16.3% improvement over the HESPSOALO 
(Base). Ki is reduced to avoid long-term instability and faster error correction. By maintaining this balance 
between quick response and overall system stability, the UAV achieves steady-state performance without causing 
oscillatory decoupling. This optimization of Ki for the proposed method thus optimizes roll control precision 
and makes the system more reliable for timely operation.

Moreover, the proposed method greatly optimizes the derivative gain Kd and significantly helps to 
minimize the oscillations and stabilize the control system. Compared with the FOPID (Base), the FOPID-based 
HESPSOALO method results in a 10.4% reduction in Kd and a 21.0% reduction in Kd compared with the 
HESPSOALO (Base). The effectiveness of the proposed method in reducing system sensitivity to sudden changes 
in error, thereby creating a smoother control response, especially in yaw control, is clearly illustrated in this 
reduction. With Kd optimization, the proposed method decreases the possibility of oscillation so that the flight 
paths are stable, and the overall control performance is improved in a dynamic environment. Moreover, in 
the proposed method, the fractional order parameters λ and μ, which determine the dynamic response and 
robustness to disturbances, are notably improved. For pitch control, the λ value is 8.7% higher than that of 
FOPID (Base) and 12.5% higher than that of HESPSOALO (Base) and reduces μ for yaw control by 9.0% and 
13.0%, respectively. In fact, these higher values of λ and μ indicate that the proposed method is much better 
equipped at handling disturbances and uncertainties in terms of pitch and yaw control. The hybrid algorithm 
optimizes the fractional order dynamics, and they further improve the system’s ability to smooth out and provide 
more stable responses under various conditions.

Results of the benchmarking functions
To confirm the reliability and stability of our proposed algorithms, i.e., FOPID-based HESPSOALO, FOPID-
based HPSOGWO, and FOPID-based HGWOALO, we applied them to a series of benchmark functions. The 
size of the population was imposed to be 20, and the maximum number of iterations was also imposed to be 1000 
for all algorithms. For statistically significant results, each algorithm was run with 20 independent runs over 
the benchmark functions. For each of the five selected benchmark functions, we report the best, worst, average, 
median, and standard deviation (STD) values of algorithm performance. The following metrics allow us to view a 
broader picture of how effective and precise these algorithms are in finding the optimal solutions. As summarized 
in Table 7, we find that the proposed algorithms maintain high performance on all benchmark functions. In 
particular, FOPID-based HESPSOALO achieved the greatest overall performance, reaching the optimal values 
for all the tested functions, an effective solution for the movement of the global extremum and high robustness 
and accuracy. For example, in the sphere function (f1), all the algorithms reached the same minimum value of 
zero, and it was demonstrated that FOPID-based HESPSOALO found a precise global minimum in each run. 
However, the FOPID-based HPSOGWO and FOPID-based HGWOALO also yield near optimal values, but 
their worst and average performance statistics are not as good. The Ackley function (f3) once again underlines 
the effectiveness of the FOPID-based HESPSOALO in multimodal topographies of the search space. While it 
always avoids local optima and delivers the best values for each run, the other two algorithms differ in terms 
of average and standard deviation, which reflects the uniformity of the mean fitness of both algorithms and the 
stability of the performance of the algorithm in the worst possible space. The multimodal functions, such as 
Rosenbrock and Griewank, contain very large search spaces, and they contain several local optimums. In these 
scenarios, FOPID-based HGWOALO also has competitive performance and is very close to the global optimum, 
although the worst run to the best run was slightly higher than that of FOPID-based HESPSOALO.

The benchmark functions, comprising different optimization problems applied to assess the algorithms 
developed in our research. They are prototype test problems for evaluating optimization techniques, especially 
in terms of identifying the whole space minimum without becoming trapped in a local minimum. The sphere 
function is a class of unimodal benchmark functions that can be used to assess the performance of optimization 
techniques. The form is both parabolic and convex; it is rather easy to maximize because it has no local minimum 
to imprison an algorithm. The minimum of this function is at (x, y) = (0,0) and f(x, y) = 0. The objective of 
the optimizing function is to minimize or drive this function to 0. Owing to the relative simplicity of the Sphere 
function and the lack of a local minimum, its smooth nature enables one to estimate how quickly and without loss 
of accuracy an algorithm can reach a solution in a simple search space. In our experiments, this function aids in 
the assessment of the fundamental time/space performance of our algorithms, as this puzzle is relatively simple 
for most algorithms to solve. The optimization landscape of the Rosenbrock function, also known as the banana 
function, is relatively difficult to optimize. This means that although it is unimodal, a curved narrow valley that 
leads to a global minimum makes it challenging to locate the optimum for the algorithms. The function’s global 
minimum is within this valley, although the path through the curved valley to reach it cannot be performed with 
a straight shot. This characteristic makes the Rosenbrock function a benchmark of accuracy and the ability of 

Scientific Reports |        (2025) 15:18962 25| https://doi.org/10.1038/s41598-025-01508-y

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


the algorithm to converge along a difficult optimization trajectory. The results for this function show how each 
algorithm performs in landscapes where the minimum global is less apparent to navigate. Using the Ackley 
function, this approach of optimization appeared to be better because it is a highly multimodal surface that, in 
fact, has many local minima. The point of the global minimum is in a very flat region, which is situated in a rather 
narrow valley; thus, this problem is especially complicated for many of the optimization algorithms that are used 
as a means of balancing the two principal factors—exploration and exploitation. This feature of the function 
that defines the given function shapes the hopeful contours to check the algorithms’ ability not to become stuck 
at the local minimum and to iterate the search space. In our experiments, the role of the Ackley function is to 
assess the potential of the devised algorithms to explore the space of solutions and, simultaneously, to approach 
the global optimum. Furthermore, the Beale function has a multidimensional surface that presents multiple 
local minima, which can mislead the optimization algorithms. This is especially advantageous for evaluating its 
performance in cases where the probability landscape of the corresponding algorithm in the space of parameter 
configurations is multimodal, and it is necessary to exit a set of local minima. The outcome of employing our 
algorithms on this function allows comprehending not only the stability of the algorithms but also their ability 
to handle challenging search spaces containing numerous distractions.

Like Beale or Ackley, Booth is another multimodal function, but its landscape is relatively simpler than these 
two functions. The global minimum is at point (1,3); however, the function remains difficult because of the 
curved surface of the paraboloid, which prompts the algorithm to determine the precision of the optimum with 
fewer local minima than many of the other functions do. Thus, the Booth function remains in the middle as a 
reference between the Sphere function and highly complex multimodal landscapes such as Ackley or Beale. The 
Levi function also includes strong periodicity and multiple local minima, which is why it is challenging to solve 
for optimization algorithms. The point of the minimum function is (1,1), but owing to the periodicity of the 
surface, the algorithms are going through numerous local traps. The Levi function checks the algorithms’ capacity 
to avoid local optima and other corresponding stochastic search algorithms; hence, it is crucial in determining 
algorithm performance in hard search spaces. It is a multimodal function with four global minima and a robust 
test of algorithms’ ability to explore the search space. Both wide basins and steep inclines characterize the surface 
of the function, making it very difficult for the algorithms to explore the search space well without ‘getting stuck’ 
in suboptimal solutions. The ability to find multiple optima and select the best global solution is demonstrated by 
successful optimization of the Himmelblau function. A smooth, multimodal surface with many local minima is 
given by the three-hump camel function. This is used to evaluate how well algorithms can travel moderately high 

Function Algorithm Best value Worst value Avg. value Median value STD

f1 (x)

FOPID-based HESPSOALO 0 0 0 0 0

FOPID-based HPSOGWO 1.12E−10 1.34E−09 3.67E−10 1.78E−10 2.14E−10

FOPID-based HGWOALO 2.89E−09 6.78E−08 3.56E−08 2.34E−08 3.21E−08

f2 (x)

FOPID-based HESPSOALO 0 0 0 0 0

FOPID-based HPSOGWO 3.45E−11 2.56E−09 7.67E−10 4.78E−10 1.25E−10

FOPID-based HGWOALO 8.34E−10 5.67E−08 2.98E−09 1.67E−09 5.68E−09

f3 (x)

FOPID-based HESPSOALO 0 0 0 0 0

FOPID-based HPSOGWO 4.57E−08 9.88E−06 5.68E−07 4.57E−07 2.35E−07

FOPID-based HGWOALO 9.88E−07 1.23E−04 1.57E−06 8.90E−07 7.89E−07

f4 (x)

FOPID-based HESPSOALO 0 0 0 0 0

FOPID-based HPSOGWO 3.46E−07 7.65E−05 1.23E−06 8.90E−07 4.57E−07

FOPID-based HGWOALO 6.54E−06 2.35E-04 5.68E−06 3.46E−06 1.23E−06

f5 (x)

FOPID-based HESPSOALO 0 0 0 0 0

FOPID-based HPSOGWO 1.23E−05 5.68E−03 3.46E−04 2.35E−04 1.23E−03

FOPID-based HGWOALO 3.46E−04 1.23E−02 9.88E−04 7.65E−04 3.46E−03

f6 (x)

FOPID-based HESPSOALO 0 0 0 0 0

FOPID-based HPSOGWO 4.23E−08 7.65E−06 3.45E−07 2.34E−07 2.45E−07

FOPID-based HGWOALO 9.88E−07 1.23E−04 5.34E−06 4.12E−06 2.12E−06

f7 (x)
FOPID-based HESPSOALO 0 0 0 0 0

FOPID-based HPSOGWO 1.89E−06 7.65E−04 4.12E−05 2.89E−05 2.13E−05

FOPID-based HGWOALO 5.78E−06 2.34E−04 8.34E−05 5.67E−05 3.46E−05

f8 (x)

FOPID-based HESPSOALO 0 0 0 0 0

FOPID-based HPSOGWO 4.57E−07 1.23E−04 3.45E−05 1.78E−05 1.56E−05

FOPID-based HGWOALO 8.76E−07 3.45E−04 9.88E−05 7.65E−05 3.45E−05

f9 (x)

FOPID-based HESPSOALO 0 0 0 0 0

FOPID-based HPSOGWO 1.23E−05 4.56E−03 3.12E−04 1.45E−04 2.45E−04

FOPID-based HGWOALO 3.67E−05 7.34E−03 4.23E−04 2.34E−04 3.12E−04

Table 7.  Results of FOPID-based HESPSOALO, HPSOGWO, and HGWOALO on benchmark functions.
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riddled landscapes while remaining prone to falling into local minima and then converging to global minima. 
Given its simplicity compared with the more complex multimodal functions such as Ackley or Levi, the function 
is a valuable benchmark for testing general robustness and efficiency. Eggholder function is a challenging 
benchmark function for several reasons: its extremely irregular landscape and extremely large search range. 
Owing to the objectionable steep drops and sharp peaks on the surface of the function, it is extremely difficult for 
optimization algorithms to avoid local minima to seek a global minimum. Eggholder function is a test case of an 
algorithm’s ability to explore and handle extreme complexity. It tests the suitability of the algorithms in solving 
search spaces that are highly difficult, far from smooth or convex.

MCDM results for UAV multicircular
The results of the MCDM analysis on the UAV multicircular system are presented in this section via the 
integration of CRITIC and TOPSIS. The five alternatives (FOPID controller, HESPSOALO, FOPID-based 
HESPSOALO, FOPID + HPSOGWO, and FOPID + HGWOALO) are evaluated across five criteria.

Results of the criterion weights
The CRITIC-based weighting and normalized decision matrix reveal distinct parameter prioritizations across 
the algorithms, indicating various optimization approaches for UAV control in multicircular flight. In Table 8, on 
the basis of the evaluation decision matrix in Table 6, the HESPSOALO algorithm (Base) maximizes Kp and µ 
with extremal values, emphasizing immediate system responsiveness, whereas the FOPID-based HESPSOALO 
balances the integral, derivative, and fractional integrator parameters (Ki, d, λ) to enhance control stability. 
Comparatively, FOPID + HPSOGWO and FOPID + HGWOALO place strong emphasis on Ki, prioritizing error 
minimization and system stability.

The correlation matrix in Table 9 highlights significant interactions, notably between Kp and Ki( -0.97652), 
suggesting an inverse relationship essential for balanced control. Similarly, Kp and λ have a moderate negative 
correlation, which impacts the dynamic response, whereas a positive link exists between µ and Kp( 0.820542), 
indicating synergistic potential. Standard deviations reveal that μ and Kp vary the most across algorithms, 
underscoring their critical roles in adaptive control strategies. The final CRITIC weights identify Kp as the most 
impactful parameter (0.244019), followed by μ (0.241378) and λ (0.179558), highlighting the importance of both 
the proportional response and long-term control in optimal UAV performance. The derivative gain Kd has the 
lowest weight (0.161023), contributing less to this optimization context.

Results of the control alternatives rank
The TOPSIS method ranks five optimization algorithms listed in the proposed decision matrix (Table 
6), namely, the FOPID controller (Base), HESPSOALO algorithm (Base), FOPID-based HESPSOALO, 
FOPID + HPSOGWO, and FOPID + HGWOALO, on the basis of five criteria: Kp, Ki, Kd, λ, and µ. Each 
criterion was weighed to determine how well each algorithm approached an ideal solution. The weighted decision 
matrix in Table 10 presents normalized values, reflecting the importance of the criteria and each algorithm’s 
performance. The FOPID Controller (Base) showed moderate weights, particularly strong in μ, but low weights 
in Kp, suggesting limited reliance on proportional gain. HESPSOALO focuses heavily on Kp and µ, indicating 
a more concentrated optimization strategy with minimal weighting on other criteria. In contrast, FOPID-based 
HESPSOALO distributes its weights across Ki, Kd, and λ, contributing to enhanced long-term accuracy and 

Controller Gains Criteria C1 C2 C3 C4 C5 weight

Kp C1 1 − 0.97652 − 0.66851 − 0.81248 0.820542 0.244019

Ki C2 − 0.97652 1 0.722887 0.86406 − 0.86369 0.174022

Kd C3 − 0.66851 0.722887 1 0.636609 − 0.58746 0.161023

λ C4 − 0.81248 0.86406 0.636609 1 − 0.99725 0.179558

µ C5 0.820542 − 0.86369 − 0.58746 − 0.99725 1 0.241378

σ 0.409518 0.387058 0.39094 0.3942 0.405741

Table 9.  Correlations between the criteria, the standard deviation of each criterion, and the final weights of the 
criteria.

 

Controller method C1 C2 C3 C4 C5

Kp Ki Kd λ µ

A1 FOPID Controller (Base) 0.150734 0.768226 0.565844 0.276836 0.713235

A2 HESPSOALO algorithm (Base) 1 0 0 0 1

A3 FOPID based HESPSOALO 0 1 1 1 0

A4 FOPID + HPSOGWO 0.090151 0.699674 0.329218 0.584746 0.360294

A5 FOPID + HGWOALO 0.133726 0.846572 0.156379 0.759887 0.17402

Table 8.  The normalized decision matrix.
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control stability. The FOPID + HPSOGWO and FOPID + HGWOALO algorithms had smoother distributions, 
emphasizing Ki and λ to stabilize control dynamics over immediate responsiveness.

The TOPSIS results in Table 11, which are based on the closeness coefficient R(Ai), ranked HESPSOALO 
the highest, with a value of 0.571161, showing minimal separation from the negative ideal solution and 
demonstrating balanced performance across criteria. The FOPID controller ranked second, with an R(Ai) of 
0.456113, followed by the FOPID-based HESPSOALO. FOPID + HGWOALO and FOPID + HPSOGWO ranked 
fourth and fifth, with higher separations from the positive ideal, indicating that their overall optimization 
performance was lower. HESPSOALO’s high rank reflects effective trade-offs across criteria, establishing it as the 
optimal choice for ideal solution proximity.

Research conclusion and implications
This study introduces a hybrid algorithm-based approach, specifically the FOPID-based HESPSOALO 
algorithm, which is designed to enhance UAV control during Multicircular flight by integrating the strengths of 
several optimization techniques. The results indicate that FOPID-based HESPSOALO significantly outperforms 
the baseline methods (FOPID, HESPSOALO, FOPID + HPSOGWO, and FOPID + HGWOALO) in terms 
of key control parameters (Kp, Ki, Kd, λ, and µ), achieving improved stability, precision, and smoother 
system dynamics. Using MCDM techniques, particularly the CRITIC method for criterion weighting and the 
TOPSIS method for ranking, the proposed algorithm demonstrated superior disturbance rejection and reduced 
positional and angular errors, confirming its robustness in UAV multicircular flight scenarios.

These findings hold significant industrial implications, particularly for UAV applications in sectors requiring 
high stability and accuracy, such as infrastructure inspection, agriculture, and logistics. The HESPSOALO 
algorithm’s balance between local and global optimization enhances its practical utility in real-world 
environments, supporting both civilian and military applications where adaptive control for intricate trajectories 
is essential.

Despite these advancements, there are notable limitations. First, the computational complexity of the 
FOPID-based HESPSOALO algorithm poses challenges for real-time applications, as the combined use of PSO, 
ALO, and the Eagle strategy requires significant processing resources. This restricts the algorithm’s practicality 
in systems where low latency is essential. Additionally, while the algorithm performs well in Multicircular flight 
paths for limited UAVs, its scalability to larger UAV networks or more complex formations remains unexplored. 
Future research should focus on reducing the computational load of the HESPSOALO algorithm to facilitate 
real-time processing on UAVs with limited computational capacity. Expanding testing to more intricate, 
unpredictable flight scenarios will help assess the algorithm’s robustness under conditions of high uncertainty 
and nonlinearity. Investigating its scalability to control larger UAV systems and formations is also essential for 
broadening its applicability. Integrating machine learning for adaptive control may enable the system to learn 
from real-time data, dynamically optimizing control in response to environmental changes. Finally, conducting 
physical tests on UAV hardware will be crucial for validating simulation results and confirming real-world 
effectiveness, while comparative studies with other state-of-the-art algorithms may further illuminate potential 
areas for enhancement and extend the validation using CEC 2020 and CEC 2017 composite/hybrid functions 
for further robust testing.

Data availability
The datasets used and/or analyzed during the current study are available from the corresponding author upon 
reasonable request.

Controller method S
+
i

S
−
i R (Ai) rank

A1 FOPID controller (base) 0.071114 0.059637 0.456113 2

A2 HESPSOALO algorithm (Base) 0.088453 0.117809 0.571161 1

A3 FOPID based HESPSOALO 0.117809 0.088453 0.428839 3

A4 FOPID + HPSOGWO 0.093093 0.036707 0.282794 5

A5 FOPID + HGWOALO 0.105459 0.043784 0.293373 4

Table 11.  Separation measures and ranks.

 

Controller method C1 C2 C3 C4 C5

Kp Ki Kd λ µ

A1 FOPID Controller (Base) 0.036782 0.133688 0.091114 0.049708 0.17216

A2 HESPSOALO algorithm (Base) 0.244019 0 0 0 0.241378

A3 FOPID based HESPSOALO 0 0.174022 0.161023 0.179558 0

A4 FOPID + HPSOGWO 0.021999 0.121758 0.053012 0.104996 0.086967

A5 FOPID + HGWOALO 0.032632 0.147322 0.025181 0.136444 0.042005

Table 10.  The weighted decision matrix.
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