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A B S T R A C T

Malaria and leptospirosis are emerging vector-borne diseases that pose significant global health
problems in tropical and subtropical regions. This study aimed to develop and analyze a
mathematical model for the transmission dynamics of malaria-leptospirosis co-infection with
optimal control measures. The model’s dynamics are examined through its two sub-models:
one for malaria alone and the other for leptospirosis alone. We apply a next-generation
matrix approach to derive the basic reproduction numbers for the sub-models. By using the
reproduction number, we demonstrate the local and global asymptotic stability of both disease-
free and endemic equilibria in these sub-models. We perform numerical experiments to validate
the theoretical outcomes of the full co-infection model. The graphical results show that malaria-
leptospirosis co-infection will be eradicated from the population through time if 𝑅0𝑚𝑙 < 1.
Conversely, if 𝑅0𝑚𝑙 > 1, the co-infection will persist in the population. Furthermore, we
investigate an optimal control model to demonstrate the impact of various time-dependent
controls in reducing the spread of both diseases and their co-infection. We use the forward–
backward sweep iterative method to perform numerical simulations of the optimal control
problem. Our findings of the optimal control problem imply that strategy 𝐷, which incorporates
all optimal controls, namely malaria prevention 𝜔1(𝑡), leptospirosis prevention 𝜔2(𝑡), insecticide
control measure for malaria 𝜔3(𝑡), control sanitation rate of the environment 𝜔4(𝑡) is the most
effective in minimizing our objective function. We also conduct a cost-effectiveness analysis to
identify the predominant strategy in terms of cost among the optimal strategies.

Introduction

Malaria is an infectious disease of humans caused by protozoan parasites in the genus Plasmodium and transmitted by female
Anopheles mosquitoes through their bites [1,2]. Human malaria is commonly caused by five species of Plasmodium parasites: P.
falciparum, P. vivax, P. malariae, P. ovale wallikeri and P. ovale curtisi [3–5]. P.falciparum and P.vivax are the most prevalent and
deadly malaria parasites, responsible for more than 95% of human infections worldwide [6]. P.falciparum is the most widespread
and dangerous malaria parasite in African regions, particularly in the regions of sub-Saharan Africa. On the other hand, P.vivax is
the predominant parasite outside of Africa, especially in the Americas and Asia [7]. Malaria infection continues to be a significant
health problem, with a high number of cases and deaths reported in tropical and subtropical regions, particularly in Sub-Saharan
Africa. According to the World Health Organization (WHO) report in 2021, there were approximately 247 million malaria cases
and a total of 619 thousand deaths across 84 malaria-endemic countries worldwide. This is a significant rise compared to the 241
million cases reported in 2020 [8,9]. In 2021, 96% of global malaria deaths occurred in just 29 countries. Shockingly, four of
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these countries (Nigeria, the Democratic Republic of the Congo, Tanzania, and Niger) accounted for 52% of all malaria deaths
lobally. Of the estimated malaria cases reported in 2021, 234 million cases (95%) occurred in the WHO African region [10]. The

WHO recently reported an estimated 249 million malaria cases and 608,000 deaths in 85 malaria-endemic countries in 2022. This
arked a significant increase in cases compared to 2021. The main country contributor to the increase was Pakistan, followed by
thiopia, Nigeria, and Uganda, according to WHO. Of the estimated cases reported in 2022, 94% (233 million cases) were in the
HO African region, with Nigeria (27%), the Democratic Republic of the Congo (12%), Uganda (5%) and Mozambique (4%), which

together accounted for about 50% of global malaria cases. Moreover, about 96% of malaria deaths globally were in 29 countries,
ith Nigeria (31%), the Democratic Republic of the Congo (12%), Niger (6%) and the United Republic of Tanzania (4%) responsible

for more than half of all malaria deaths worldwide in 2022 [1,11].
Leptospirosis is a zoonotic bacterial disease caused by pathogenic species in the genus Leptospira. It affects both humans and

nimals [12–14]. Rodents, such as rats and mice, are the main carriers of Leptospira globally, especially in tropical and sub-tropical
egions like Southeast Asia and Sub-Sahara Africa, where the disease is endemic [15,16]. The pathogen is mainly found in the urine

of infected animals (rodents) and can survive in moist soil and water [17,18]. The rodent-born leptospirosis is transmitted to humans
or other rodents most commonly through contact with soil or water that has been contaminated by the urine of infected rodents, or
through contact with the urine of leptospirosis-infected rodents [19–21]. Leptospirosis transmission from person to person is very
are [22]. According to recent reports, the incidence of leptospirosis was estimated to be 1.03 million cases worldwide, of which

58.9 thousand ended with death [23,24].
Co-infection involves the simultaneous infection of a single host by various pathogen species. It also occurs when two or more

pathogen variants (genetic variations of the same pathogen) infect a single host simultaneously [25,26]. Nowadays, co-infection of
infectious diseases is a major medical concern, significantly contributing to increased mortality rates globally. Approximately 30%
f human infections are likely co-infections, with this rate potentially reaching 80% in some human communities [27]. Malaria
nd leptospirosis are bacterial diseases that cause global health problems with overlapping geographic distribution, especially in
ropical and subtropical areas, suggesting a high potential for the coexistence of Plasmodium and Leptospira in the same individual.
ndeed, several studies have well-documented malaria-leptospirosis co-infection cases in the human population. [28] quantified the

prevalence of malaria and leptospirosis co-infection among febrile patients in various tropical and subtropical countries. They also
nvestigated the association between the two infections. Likewise, [29] reported a high number of malaria-leptospirosis co-infections

in their study. The study suggests that managing malaria and leptospirosis co-infection is challenging due to their similar clinical
presentations and the readily available confirmatory diagnosis for malaria compared to leptospirosis. Focusing treatment on malaria

ono-infections may delay specific therapy for leptospirosis and vice versa. According to the findings in [30], 23.4% of leptospirosis
patients have malaria cases. Moreover, in [31–33], the authors described malaria-leptospirosis co-infection cases in areas where both
diseases are endemic.

Mathematical modeling has become a vital discipline in studying the dynamics of infectious diseases using mathematical tools. It
helps in gaining a better understanding of disease transmission dynamics, predicting the outcome of disease spread, and suggesting
appropriate health control measures for disease eradication in the population. In particular, mathematical models with optimal
control theory play an essential role in devising cost-effective strategies to quantify and mitigate disease spread [34–36].

A lot of mathematical models have been developed to study the dynamics of malaria transmission from various perspectives. [37]
presented a mathematical model to assess the impact of relapse and reinfection on the transmission dynamics of malaria. Their
findings highlighted that both reinfection and relapse significantly influence malaria dynamics. [38] proposed a mathematical model
o analyze the effect of seasonality and ivermectin on malaria transmission, while [39] investigated a deterministic model to show

the effect of drug-resistance strains, treatment, and use of misquotes nets on the transmission dynamics of malaria in Nigeria. [40]
developed a mathematical model using impulsive partial differential equations to assess the effectiveness of indoor residual spraying
(IRS) in reducing malaria transmission. Furthermore, several scholars have applied the optimal control theory to eradicate malaria
infection by incorporating various factors in malaria models. In [41], Dipo Aldila and Michellyn Angelina developed a mathematical
model for malaria transmission dynamics, focusing on the implications of vector bias and the application of optimal control
strategies. Another study [42] examined a mathematical model for malaria transmission dynamics with and without seasonal factors
in mosquito populations and also incorporated optimal control measures like insecticides, prevention, and treatment. Authors in [43]
formulated a two-group mathematical model by age distinguishing between vaccinated and unvaccinated populations for malaria
transmission that incorporates vaccination strategies. The authors used optimal control theory to assess strategies that minimize
malaria infections. The findings highlighted the importance of combining vaccination with other interventions, such as treatment
and personal protection to achieve optimal outcomes. Likewise, many other researchers have applied optimal control theory to assess
intervention strategies for malaria, incorporating factors such as vector bias, relapse, reinfection, and vaccination into mathematical
models to better understand and reduce malaria transmission (see [44–46]).

Some other researchers have developed the co-infection of malaria with other infectious diseases such as HIV [47], cholera [48],
leishmaniasis [49], and COVID-19 [50–52]. On the other hand, [53] studied a compartmental model for leptospirosis and dengue
co-infection in the absence of optimal controls that incorporates susceptible, infected, and recovered individuals for both diseases.

The dynamics of leptospirosis transmission in the absence of optimal controls have been described by several mathematical
odels. [54] developed a deterministic mathematical model for the transmission dynamics of leptospirosis. [55] proposed a

mathematical model for the dynamic behavior of leptospirosis with saturated incidence. They examined the stability analysis of the
steady states of their model. [56] modeled the dynamics of leptospirosis using a compartmental approach. Also, [57] developed and
examined a mathematical model for the dynamics of leptospirosis transmission in human, rodent and bacterial populations. While,
mathematical studies [58–61] have explored the dynamics of leptospirosis using the application of the optimal control theory. The
2 
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primary aim of infectious disease modeling is to develop effective interventions for controlling and ultimately eradicating diseases.
Additionally, mathematical models that employ the optimal control theory are essential for developing cost-effective interventions
to achieve these objectives. Leptospirosis-malaria co-infection is common in tropical and subtropical regions due to their similar
geographical distributions. Both diseases share similarities in clinical symptoms. The prevalence of their co-infection cases has
been reported subsequently in the literature. To the best of our knowledge, the dynamics of malaria and leptospirosis co-infection
transmission has not been described by a compartmental mathematical model. This overlooked aspect motivates us to study the co-
infection dynamics between malaria and leptospirosis. The goal of this study is to propose a novel deterministic mathematical model
that provides a detailed analysis of the qualitative and quantitative dynamics of malaria-leptospirosis co-infection. Thus, we develop
and rigorously analyze a mathematical model for malaria-leptospirosis co-infection, which incorporates their key biological and
epidemiological characteristics. We shall also explore an optimal control model of malaria-leptospirosis co-infection by integrating
four control measures: two for malaria (prevention against mosquito bites and insecticide control measures) and another two controls
for leptospirosis (leptospirosis prevention and the control sanitation rate of the environment). We apply optimal control theory to
identify the most effective strategies (in terms of efficacy and cost). The study employs Pontryagin’s maximum principle (PMP) to
solve the optimal control model.

The paper is structured as follows: In Section ‘‘Model formulation’’, we present the formulation of our proposed co-infection
odel. In Section ‘‘Model analysis’’, we present the detailed analytical analysis of this model, with Section ‘‘Malaria-only model’’

nd Section ‘‘Leptospirosis-only model’’ focusing on the malaria-only and leptospirosis-only sub-models, respectively, and Section
‘Malaria-leptospirosis model’’ presents the full malaria-leptospirosis co-infection model. The numerical simulations of the au-
onomous model and discussions are given in Section ‘‘Numerical simulations’’. Also, the optimal control model and its mathematical
nalysis are presented in Section ‘‘Optimal control analysis of the malaria-leptospirosis model’’. Finally, we conclude the paper in
ection ‘‘Conclusion’’.

Model formulation

To formulate the transmission dynamics of the malaria-leptospirosis co-infection model, we consider three population groups
t time t: a human population 𝑁ℎ(𝑡), a mosquito population 𝑁𝑞(𝑡) and a rodent population 𝑁𝑟(𝑡). At any time 𝑡 the total human
opulation is grouped into nine epidemiological states: susceptible humans 𝑆ℎ(𝑡), humans exposed to malaria 𝐸𝑚(𝑡), humans infected
ith malaria 𝐼𝑚(𝑡), humans exposed to leptospirosis 𝐸𝑙(𝑡), humans infected with leptospirosis 𝐼𝑙(𝑡), humans infected with both malaria
nd leptospirosis 𝐼𝑚𝑙(𝑡), humans recovered from malaria 𝑅𝑚(𝑡), humans recovered from leptospirosis 𝑅𝑙(𝑡), humans recovered from
oth malaria and leptospirosis 𝑅𝑚𝑙(𝑡). Thus,

𝑁ℎ(𝑡) = 𝑆ℎ(𝑡) + 𝐸𝑚(𝑡) + 𝐼𝑚(𝑡) + 𝐸𝑙(𝑡) + 𝐼𝑙(𝑡) + 𝐼𝑚𝑙(𝑡) + 𝑅𝑚(𝑡) + 𝑅𝑙(𝑡) + 𝑅𝑚𝑙(𝑡). (1)

While the total mosquito and rodent populations are subdivided into the following states: 𝑆𝑞(𝑡) and 𝐼𝑞(𝑡) representing susceptible
osquitoes and infected mosquitoes, respectively; 𝑆𝑟(𝑡) and 𝐼𝑟(𝑡) representing susceptible rodents and infected rodents, respectively.
he total mosquito population 𝑁𝑞(𝑡) and the total rodent population 𝑁𝑟(𝑡) are given by

𝑁𝑞(𝑡) = 𝑆𝑞(𝑡) + 𝐼𝑞(𝑡), 𝑁𝑟(𝑡) = 𝑆𝑟(𝑡) + 𝐼𝑟(𝑡). (2)

Also, the concentration of the pathogens in the environment at time 𝑡 is represented by 𝐵(𝑡). The recruitment rates for human, malaria
and rodent populations, are denoted by 𝛬, 𝛬𝑞 and 𝛬𝑟, respectively. Susceptible humans could become infected with malaria, at a rate
of 𝜆𝑚 = 𝛽ℎ𝑚𝛽0𝐼𝑞

𝑁ℎ
, where 𝛽ℎ𝑚 is the probability of malaria transmission per bite in humans and 𝛽0 is the biting rate of mosquitoes per

day. Susceptible humans could also acquire leptospirosis, at a rate of 𝜆𝑙 =
𝛽ℎ𝑒𝐵
𝜅+𝐵 +𝛽ℎ𝑟𝐼𝑟, where 𝛽ℎ𝑒 and 𝛽ℎ𝑟 are leptospirosis transmission

ates in humans, the nonlinear term 𝐵
𝜅+𝐵 is contact probability between susceptible humans and contaminated environment, and the

constant 𝜅 is the pathogen concentration. Infectious individuals with malaria could become infected with leptospirosis at a rate of
1𝜆𝑙, while infectious individuals with leptospirosis could become infected with malaria at a rate 𝜏2𝜆𝑚, where the coefficients 𝜏1 and
2 represent susceptibility to a second infection. It makes sense that those who have one of the diseases will be more susceptible to
etting the other since both malaria and leptospirosis affect the immune system. 𝜏1 and 𝜏2 𝛿 (satisfying 𝜏1, 𝜏2 ≥ 1) are the modification

parameters that account for the increased infectiousness of co-infected persons caused by each disease. Susceptible mosquitoes could
acquire malaria infection, at a rate of 𝜆𝑞 = 𝛽𝑞𝛽0(𝐼𝑚+𝐼𝑚𝑙 )

𝑁ℎ
, where 𝛽𝑞 is the probability of malaria transmission in mosquitoes. While,

usceptible rodents could acquire leptospirosis infection, at a rate of 𝜆𝑟 =
𝛽𝑟𝐵
𝜅+𝐵 , where 𝛽𝑟 is leptospirosis transmission rate in rodents.

oreover, the recovery rate from the co-infected class is represented by 𝜃, individuals in this class may transfer to either malaria
nly infectious at a leptospirosis recovery rate of 𝜉1𝜃, transfer to leptospirosis only infectious at a malaria recovery rate of 𝜉2𝜃, or
ecome recovered from both diseases at a rate of

(

1 − (𝜉1+𝜉2)
)

𝜃, where 𝜉1 and 𝜉2 fractions between 0 and 1. Furthermore, individuals
n 𝐼𝑚 recover a rate of 𝛾𝑚, and they become susceptible humans or recovered humans with probabilities of 𝜁 and 1 − 𝜁 , respectively,
here 𝜁 ∈ (0, 1). It is assumed that there is a higher chance of individuals in 𝐼𝑚 becoming susceptible than individuals recovered

rom this class (i.e, 𝜁 > (1 − 𝜁)). In the formulation of the model, additional assumptions are made as follows:

(i) Humans could acquire malaria infection through contact with infected mosquitoes, while susceptible mosquitoes could acquire
malaria infection through contact with malaria-infected humans or co-infected humans [37,50].

(ii) Humans acquire infection of leptospirosis through either contact with infected rodents or contact with contaminated
environments (soil or water) [20,21,57].
3 
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Table 1
Description of parameters of the model (3).

Parameter Description Value Source

𝛬 Human population recruitment rate 𝜇 ×𝑁ℎ(0) Humans day−1 [61]
𝛽ℎ𝑚 Probability of malaria transmission in humans per bite 0.0044 Day−1 [39,62]
𝛼𝑚 Progression rate from exposed class to malaria infectious humans 0.0833 Day−1 [43]
𝛾𝑚 Recovery rate of malaria infectious humans 0.00014 Day−1 [42,63]
𝜌𝑚 Waning immunity rate of 𝑅𝑚(𝑡) 0.005 Day−1 [42,63]
𝜇 Natural death rate of humans 1

70×365
Day−1 [39,42]

𝛽0 Mosquitoes biting rate 1 [37,47]
𝛽ℎ𝑒 leptospirosis transmission rate in humans from the environment 0.00047 Assumed
𝛽ℎ𝑟 leptospirosis transmission rate in humans from rodents 0.0004 Assumed
𝛼𝑙 Progression rate from exposed to leptospirosis-infected humans 0.003 Day−1 [60]
𝛾𝑙 Recovery rate of leptospirosis infected humans 0.0027 Day−1 [53]
𝜌𝑙 Waning immunity rate of 𝑅𝑙(𝑡) 0.00285 Day−1 [53,60]
𝜃 Recovery rate of co-infection 0.00014 Day−1 Assumed
𝜏1 Modification parameter for enhancing leptospirosis infection 1.02 [37,39]

in humans due to malaria infection
𝜏2 Modification parameter for enhancing malaria infection 1.01 [37,39]

in humans due to malaria infection
𝜉1 Recovery rate of leptospirosis in co-infected class 0.45 Assumed
𝜉2 Recovery rate of malaria in co-infected class 0.35 Assumed
𝜁 Probability of individual in 𝐼𝑚 becoming susceptible human 0.75 Assumed
𝛬𝑞 Recruitment rate of mosquitoes 𝜇𝑞 ×𝑁𝑞 (0) mosquitoes day−1 Assumed
𝛽𝑞 Malaria transmission rate in mosquitoes 0.0044 [39,64]
𝜇𝑞 Natural mortality rate of Mosquitoes 1

15
Day−1 [64,65]

𝛬𝑟 Recruitment rate of rodents 0.285 rodents day−1 [59]
𝛽𝑟 Leptospirosis transmission rate in rodents 0.000003 [59]
𝜇𝑟 Natural mortality rate of rodents 0.0018 Day−1 [58]
𝜇𝑏 Bacteria removal rate 0.05 Day−1 [57,61]
𝜅 Pathogenic concentration in environment 7000 pathogens Assumed
𝜖1 , 𝜖2 shading rates of 𝐵 from 𝐼𝑙 and 𝐼𝑚𝑙 , respectively log10(8.1 × 108) day−1 Assumed
𝜖3 The rates at which the size of 𝐵 increase by class 𝐼𝑟 log10(8.1 × 108) day−1 [59]

(iii) Rodents acquire infection of leptospirosis through contact with contaminated environments (soil or water).
(iv) We assumed that humans with malaria are susceptible to infection with leptospirosis and vice versa based on several case

reports on the co-infection of the two diseases [28,30,33].
(v) Also assumed homogeneous mixing between human and rodent populations [57].

(vi) The incidence from the contaminated environment to humans is assumed to be modeled logistically [57,61].

The description, values and sources of the model parameters are given in Table 1 whereas flow diagram of the model is provided
n Fig. 1.

From Fig. 1, the model is described by the following system of non-linear ODEs.
𝑑 𝑆ℎ
𝑑 𝑡 = 𝛬 + 𝜁 𝛾𝑚𝐼𝑚 + 𝜌𝑚𝑅𝑚 + 𝜌𝑙𝑅𝑙 + 𝜌𝑚𝑙𝑅𝑚𝑙 −

(

𝜆𝑚 + 𝜆𝑙 + 𝜇
)

𝑆ℎ,
𝑑 𝑅𝑙
𝑑 𝑡 = 𝛾𝑙𝐼𝑙 − (𝜌𝑙 + 𝜇)𝑅𝑙 ,

𝑑 𝐸𝑚
𝑑 𝑡 = 𝜆𝑚𝑆ℎ − (𝛼𝑚 + 𝜇)𝐸𝑚,

𝑑 𝑅𝑚𝑙
𝑑 𝑡 = (1 − (𝜉1 + 𝜉2))𝜃 𝐼𝑚𝑙 − (𝜌𝑚𝑙 + 𝜇)𝑅𝑚𝑙 ,

𝑑 𝐼𝑚
𝑑 𝑡 = 𝛼𝑚𝐸𝑚 + 𝜉1𝜃 𝐼𝑚𝑙 − (𝛾𝑚 + 𝜇 + 𝜏1𝜆𝑙)𝐼𝑚,

𝑑 𝑆𝑞
𝑑 𝑡 = 𝛬𝑞 −

(

𝜆𝑞 + 𝜇𝑞
)

𝑆𝑞 ,
𝑑 𝐸𝑙
𝑑 𝑡 = 𝜆𝑙𝑆ℎ − (𝛼𝑙 + 𝜇)𝐸𝑙 ,

𝑑 𝐼𝑞
𝑑 𝑡 = 𝜆𝑞𝑆𝑞 − 𝜇𝑞𝐼𝑞 ,

𝑑 𝐼𝑙
𝑑 𝑡 = 𝛼𝑙𝐸𝑙 + 𝜉2𝜃 𝐼𝑚𝑙 − (𝛾𝑙 + 𝜇 + 𝜏2𝜆𝑚)𝐼𝑙 ,

𝑑 𝑆𝑟
𝑑 𝑡 = 𝛬𝑟 −

(

𝜆𝑟 + 𝜇𝑟
)

𝑆𝑟,
𝑑 𝐼𝑚𝑙
𝑑 𝑡 = 𝜏1𝜆𝑙𝐼𝑚 + 𝜏2𝜆𝑚𝐼𝑙 −

(

𝜃 + 𝜇
)

𝐼𝑚𝑙 ,
𝑑 𝐼𝑟
𝑑 𝑡 = 𝜆𝑟𝑆𝑟 − 𝜇𝑟𝐼𝑟,

𝑑 𝑅𝑚
𝑑 𝑡 = (1 − 𝜁 )𝛾𝑚𝐼𝑚 − (𝜌𝑚 + 𝜇)𝑅𝑚,

𝑑 𝐵
𝑑 𝑡 = 𝜖1𝐼𝑙 + 𝜖2𝐼𝑚𝑙 + 𝜖3𝐼𝑟 − 𝜇𝑏𝐵 ,

(3)

where, 𝜆𝑚 = 𝛽ℎ𝑚𝛽0𝐼𝑞
𝑁ℎ

, 𝜆𝑙 = 𝛽ℎ𝑒𝐵
𝜅+𝐵 + 𝛽ℎ𝑟𝐼𝑟, 𝜆𝑞 =

𝛽𝑞𝛽0(𝐼𝑚+𝐼𝑚𝑙 )
𝑁ℎ

, 𝜆𝑟 = 𝛽𝑟𝐵
𝜅+𝐵 .

Model analysis

In this section, we consider the qualitative analysis of the two sub-models of the model system (3), as well as the full co-infection
odel.
4 
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Fig. 1. The flow diagram of the model.

Malaria-only model

By setting 𝐸𝑙(𝑡) = 𝐼𝑙(𝑡) = 𝐼𝑚𝑙(𝑡) = 𝑅𝑙(𝑡) = 𝑅𝑚𝑙(𝑡) = 𝑆𝑟(𝑡) = 𝐼𝑟(𝑡) = 𝐵𝑙(𝑡) = 0 in (3), we obtained the following malaria only model:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑑 𝑆ℎ
𝑑 𝑡 = 𝛬 + 𝜁 𝛾𝑚𝐼𝑚 + 𝜌𝑚𝑅𝑚 −

( 𝛽ℎ𝑚𝛽0𝐼𝑞
𝑁ℎ

+ 𝜇
)

𝑆ℎ,

𝑑 𝐸𝑚
𝑑 𝑡 =

𝛽ℎ𝑚𝛽0𝐼𝑞
𝑁ℎ

𝑆ℎ − (𝛼𝑚 + 𝜇)𝐸𝑚,

𝑑 𝐼𝑚
𝑑 𝑡 = 𝛼𝑚𝐸𝑚 − (𝛾𝑚 + 𝜇)𝐼𝑚,

𝑑 𝑅𝑚
𝑑 𝑡 = (1 − 𝜁 )𝛾𝑚𝐼𝑚 − (𝜌𝑚 + 𝜇)𝑅𝑚,

𝑑 𝑆𝑞

𝑑 𝑡 = 𝛬𝑞 −
( 𝛽𝑞𝛽0𝐼𝑚

𝑁ℎ
+ 𝜇𝑞

)

𝑆𝑞 ,

𝑑 𝐼𝑞
𝑑 𝑡 =

𝛽𝑞𝛽0𝐼𝑚
𝑁ℎ

𝑆𝑞 − 𝜇𝑞𝐼𝑞 ,

(4)

where,

𝑁ℎ = 𝑆ℎ + 𝐸𝑚 + 𝐼𝑚 + 𝑅𝑚. (5)

Consider the region

𝛱𝑚 =
{

(𝑆ℎ, 𝐸𝑚, 𝐼𝑚, 𝑅𝑚, 𝑆𝑞 , 𝐼𝑞) ∈ 𝑅6
+ ∶ 𝑁ℎ ≤ 𝛬

𝜇
, 𝑁𝑞 ≤

𝛬𝑞

𝜇𝑞

}

. (6)

It is easy to show (see, for example, [47,50]) that all solutions of the system (4) starting in 𝛱𝑚 will remain in this region for all
≥ 0. As a result, 𝛱𝑚 is positively invariant and attracts all solutions of (4) [66]. Thus, it is sufficient to study the dynamics of the

model (4) in 𝛱 .
𝑚
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Stability of the disease free equilibrium of the malaria-only model
The disease-free equilibrium (DFE) of the malaria-only model system (4) is obtained by setting each of the equations of the

system (4) to zero and solving for 𝑆ℎ and 𝑆𝑞 . Also, at the DFE there are no infections and recovery. Thus, the DFE point of the
ystem (4) is given by

𝜖∗0𝑚 =
(

𝑆∗
ℎ , 0, 0, 0, 𝑆∗

𝑞 , 0
)

=
(

𝛬
𝜇
, 0, 0, 0,

𝛬𝑞

𝜇𝑞
, 0
)

. (7)

By applying the method of the next-generation matrix [67] to the system (4), the associated basic reproduction number (𝑅0𝑚) is
obtained as follows: The new infection terms 𝐹 (𝑡) and the rate of transfer of individuals to the compartments 𝑉 (𝑡) are given by:

𝐹 (𝑡) =
⎛

⎜

⎜

⎜

⎝

𝛽ℎ𝑚𝛽0𝐼𝑞
𝑁ℎ

𝑆ℎ

0
𝛽𝑞𝛽0𝐼𝑚
𝑁ℎ

𝑆𝑞

⎞

⎟

⎟

⎟

⎠

, and 𝑉 (𝑡) =
⎛

⎜

⎜

⎝

(𝛼𝑚 + 𝜇)𝐸𝑚
−𝛼𝑚𝐸𝑚 + (𝛾𝑚 + 𝜇)𝐼𝑚

𝜇𝑞𝐼𝑞

⎞

⎟

⎟

⎠

.

Thus, the associated Jacobian matrices of 𝐹 (𝑡) and 𝑉 (𝑡) at 𝜖∗0𝑚 are denoted by 𝐹 and 𝑉 , respectively, given as follows:

𝐹 =

⎛

⎜

⎜

⎜

⎝

0 0 𝛽ℎ𝑚𝛽0
0 0 0
0 𝛽𝑞𝛽0𝛬𝑞𝜇

𝛬𝜇𝑞
0

⎞

⎟

⎟

⎟

⎠

, and 𝑉 =
⎛

⎜

⎜

⎝

(𝛼𝑚 + 𝜇) 0 0
−𝛼𝑚 (𝛾𝑚 + 𝜇) 0
0 0 𝜇𝑞

⎞

⎟

⎟

⎠

Therefore, the basic reproduction number of the malaria only model (4) is given by

𝑅0𝑚 = 𝜌(𝐹 𝑉 −1) =
√

√

√

√

𝛬𝑞𝛽ℎ𝑚𝛽𝑞𝛽20𝜇 𝛼𝑚
𝛬𝜇2

𝑞 (𝛼𝑚 + 𝜇)(𝛾𝑚 + 𝜇)
. (8)

Thus, based on Theorem 2 of [67], the following result is established.

Theorem 1. The DFE, 𝜖∗0𝑚, of malaria-only model system (4) is locally asymptotically stable if 𝑅0𝑚 < 1 and unstable if 𝑅0𝑚 > 1.

Global asymptotic stability of DFE of the malaria-only model
We follow the direct Lyapunov method [68], to establish the global asymptotic stability of 𝜖∗0𝑚, which requires a scalar function

𝛤0(𝜒), 𝜒 ∈ 𝑅6 defined on an open set, 𝑈0 in 𝛱𝑚, containing 𝜖∗0𝑚 and satisfying the following conditions.

(i) 𝛤0(𝜖∗0𝑚) = 0,
(ii) 𝛤0(𝜒) > 0, for all 𝜒 ∈ 𝑈0 ⧵ 𝜖∗0𝑚,

(iii) 𝑑 𝛤0
𝑑 𝑡 < 0, for all 𝜒 ∈ 𝑈0 ⧵ 𝜖∗0𝑚 and 𝑑 𝛤0

𝑑 𝑡 = 0 at 𝜖∗0𝑚.

The following result is established for global asymptotic stability of 𝜖∗0𝑚.

Theorem 2. The DFE, 𝜖∗0𝑚, given by (7) of the malaria-only model system (4) is globally asymptotically stable (GAS) if 𝑅0𝑚 ≤ 1.

Proof. If 𝑅0𝑚 < 1, there is a unique locally asymptotically stable DFE accordingly Theorem 1. Consider the following a Lyapunov
function

𝛤0(𝐸𝑚, 𝐼𝑚, 𝐼𝑞) = 𝜇𝑚𝐸𝑚 +
𝜇𝑞(𝛼𝑚 + 𝜇)

𝛼𝑚
𝐼𝑚 + 𝛽ℎ𝑚𝛽0𝐼𝑞 .

The time derivative of 𝛤0 derived along the solutions of the model system (4) is given by

𝛤 ′
0 = 𝜇𝑞𝐸

′
𝑚 +

𝜇𝑞(𝛼𝑚 + 𝜇)
𝛼𝑚

𝐼 ′𝑚 + 𝛽ℎ𝑚𝛽0𝐼
′
𝑞

= 𝜇𝑞
( 𝛽ℎ𝑚𝛽0𝐼𝑞

𝑁ℎ
𝑆ℎ − (𝛼𝑚 + 𝜇)𝐸𝑚

)

+
𝜇𝑞(𝛼𝑚 + 𝜇)

𝛼𝑚

(

𝛼𝑚𝐸𝑚 − (𝛾𝑚 + 𝜇)𝐼𝑚
)

+ 𝛽ℎ𝑚𝛽0
( 𝛽𝑞𝛽0𝐼𝑚

𝑁ℎ
𝑆𝑞 − 𝜇𝑞𝐼𝑞

)

.
(9)

Note that 𝑆ℎ
𝑁ℎ

< 1 and 𝑆𝑚 ≤ 𝛬𝑞
𝜇𝑞

in 𝑈0 ⧵ 𝜖∗0𝑚. It follows from (9) that

𝛤 ′
0 < 𝜇𝑞

(

𝛽ℎ𝑚𝛽0𝐼𝑞 − (𝛼𝑚 + 𝜇)𝐸𝑚

)

+
𝜇𝑞(𝛼𝑚 + 𝜇)

𝛼𝑚

(

𝛼𝑚𝐸𝑚 − (𝛾𝑚 + 𝜇)𝐼𝑚
)

+ 𝛽ℎ𝑚𝛽0
( 𝛽𝑞𝛽0𝛬𝑞𝜇 𝐼𝑚

𝛬𝜇𝑞
− 𝜇𝑞𝐼𝑞

)

< 𝛽ℎ𝑚𝛽0𝜇𝑞𝐼𝑞 − 𝜇𝑞(𝛼𝑚 + 𝜇)𝐸𝑚 + 𝜇𝑞(𝛼𝑚 + 𝜇)𝐸𝑚 −
𝜇𝑞(𝛼𝑚 + 𝜇)

𝛼𝑚
(𝛾𝑚 + 𝜇)𝐼𝑚 +

𝛽𝑞𝛽ℎ𝑚𝛽20𝛬𝑞𝜇 𝐼𝑚
𝛬𝜇𝑞

− 𝛽ℎ𝑚𝛽0𝜇𝑞𝐼𝑞

<
( 𝛽𝑞𝛽ℎ𝑚𝛽20𝛬𝑞𝜇

𝛬𝜇𝑞
−

𝜇𝑞(𝛼𝑚 + 𝜇)(𝛾𝑚 + 𝜇)
𝛼𝑚

)

𝐼𝑚

<
𝜇𝑞(𝛼𝑚 + 𝜇)(𝛾𝑚 + 𝜇)(

𝑅2 − 1
)

𝐼𝑚 ≤ 0 when 𝑅0𝑚 ≤ 1.

𝛼𝑚 0𝑚

6 
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Since the model parameters are non-negative, 𝛤 ′
0(𝑡) < 0 in 𝑈0 ⧵ 𝜖∗0𝑚 and if 𝑅0𝑚 ≤ 1, and 𝛤 ′

0 = 0 if and only if 𝐸𝑚 = 𝐼𝑚 = 𝐼𝑞 = 0
or at 𝜖∗0𝑚). Thus, based on Lasalle’s Invariance Principle [68],

(

𝐸𝑚(𝑡), 𝐼𝑚(𝑡), 𝐼𝑞(𝑡)
)

→ (0, 0, 0) as 𝑡 → ∞. Substituting the relation
(

𝐸𝑚(𝑡), 𝐼𝑚(𝑡), 𝐼𝑞(𝑡)
)

= (0, 0, 0) into the model system (4) yields the following system

⎛

⎜

⎜

⎝

𝑆′
ℎ(𝑡)

𝑅′
𝑚(𝑡)

𝑆′
𝑞(𝑡)

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

𝛬 + 𝜌𝑚𝑅𝑚 − 𝜇 𝑆ℎ
−(𝜌𝑚 + 𝜇)𝑅𝑚
𝛬𝑞 − 𝜇𝑞𝑆𝑞

⎞

⎟

⎟

⎠

. (10)

The solutions for 2nd and the 3rd linear ODEs of (10) can be easily found as:

𝑅𝑚(𝑡) = 𝑅𝑚(0)𝑒−(𝜌𝑚+𝜇)𝑡, 𝑆𝑞(𝑡) =
𝛬𝑞

𝜇𝑞

(

1 − 𝑒−𝜇𝑞 𝑡
)

+ 𝑆𝑞(0)𝑒
−𝜇𝑞 𝑡. (11)

It follows from (11) that 𝑅𝑚(𝑡) → 0 and 𝑆𝑞(𝑡) →
𝛬𝑞
𝜇𝑞

as 𝑡 → ∞, regardless of the initial population sizes 𝑅𝑚(0) and 𝑆𝑞(0).
Lastly, using the first equation of (10) and (11), we get

𝑆′
ℎ(𝑡) = 𝛬 + 𝜌𝑚𝑅𝑚(0)𝑒−(𝜌𝑚+𝜇)𝑡 − 𝜇 𝑆ℎ(𝑡). (12)

Solving (12), yields

𝑆ℎ(𝑡) = 𝛬
𝜇

+ 𝑆ℎ(0)𝑒−𝜇 𝑡 − 𝑅𝑚(0)𝑒−(𝜌𝑚+𝜇)𝑡. (13)

Clearly, 𝑆ℎ(𝑡) →
𝛬
𝜇 , as 𝑡 → ∞, with the initial population size. Consequently, every solution trajectory of the system (4) with the

initial population size in 𝛱𝑚 converges to 𝜖∗0𝑚 as 𝑡 → ∞ when 𝑅0𝑚 ≤ 1. Biologically, this indicates that the susceptible individuals
do not get additional infections if 𝑅0𝑚 ≤ 1. Thus, the malaria infection can be eliminated from the population in the long term if
𝑅0𝑚 ≤ 1. □

Existence of the endemic equilibrium of the malaria-only model
The endemic equilibrium point of the model (4) is a state, which is the solution set to the following system.

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝛬 + 𝜁 𝛾𝑚𝐼∗𝑚 + 𝜌𝑚𝑅
∗
𝑚 −

(

𝜆∗𝑚 + 𝜇
)

𝑆∗
ℎ = 0,

𝜆∗𝑚𝑆
∗
ℎ − (𝛼𝑚 + 𝜇)𝐸∗

𝑚 = 0,
𝛼𝑚𝐸

∗
𝑚 − (𝛾𝑚 + 𝜇)𝐼∗𝑚 = 0,

(1 − 𝜁 )𝛾𝑚𝐼∗𝑚 − (𝜌𝑚 + 𝜇)𝑅∗
𝑚 = 0,

𝛬𝑞 −
( 𝛽𝑞𝛽0𝐼∗𝑚

𝑁∗
ℎ

+ 𝜇𝑞
)

𝑆∗
𝑞 = 0,

𝛽𝑞𝛽0𝐼∗𝑚
𝑁∗

ℎ
𝑆∗
𝑞 − 𝜇𝑞𝐼

∗
𝑞 = 0,

(14)

where,

𝜆∗𝑚 =
𝛽ℎ𝑚𝛽0𝐼∗𝑞

𝑁∗
ℎ

(15)

Solving the system of Eqs. (14) at the endemic equilibrium denoted by 𝜖∗1𝑚 =
(

𝑆∗
ℎ , 𝐸∗

𝑚, 𝐼∗𝑚, 𝑅∗
𝑚, 𝑆∗

𝑞 , 𝐼∗𝑞
)

, yields, 𝑆∗
ℎ = 𝛬+𝜁 𝛾𝑚𝐼∗𝑚+𝜌𝑚𝑅∗

𝑚
(𝜆∗𝑚+𝜇)

, 𝐸∗
𝑚 =

𝜙2
𝛼𝑚

𝐼∗𝑚, 𝑅∗
𝑚 = (1−𝜁 )𝛾

𝜙3
𝐼∗𝑚, 𝑆∗

𝑞 =
𝛬𝑞𝑁∗

ℎ
𝛽𝑞𝛽0𝐼∗𝑚+𝜇𝑞𝑁∗

ℎ
,

𝐼∗𝑚 =
𝛬𝛼𝑚𝜙3𝜆∗𝑚

𝜙1𝜙2𝜙3𝜇 + 𝜆∗𝑚
[

𝛼𝑚𝛾𝑚𝜇(1 − 𝜁 ) + 𝜙3

(

𝛼𝑚𝜇 + 𝜇 𝜙2

)] , 𝐼∗𝑞 =
𝛬𝑞𝛽𝑞𝛽0𝐼∗𝑚

𝜇2
𝑞𝑁

∗
ℎ + 𝛽𝑞𝛽0𝜇𝑞𝐼∗𝑚

, (16)

where, 𝜙1 = 𝛼𝑚 + 𝜇 , 𝜙2 = 𝛾𝑚 + 𝜇, and 𝜙3 = 𝜌𝑚 + 𝜇.
The Eq. (15), yields

𝐼∗𝑞 =
𝜆∗𝑚𝑁

∗
ℎ

𝛽ℎ𝑚𝛽0
. (17)

Note that 𝑁∗
ℎ denotes the value of 𝑁ℎ at 𝜖∗1𝑚, solving for it at 𝜖∗1𝑚, gives 𝑁ℎ = 𝛬

𝜇 . Thus, by combining the Eqs. (16) and (17), we
obtain the following quadratic polynomial equation in 𝜆∗𝑚 given by

𝜆∗𝑚(𝐴1𝜆
∗
𝑚 + 𝐴0) = 0, (18)

where,

𝐴1 =
𝛬2

𝜇2
[

𝛼𝑚𝛾𝑚𝜇(1 − 𝜁 ) + 𝜙3

(

𝛼𝑚(𝛿𝑚 + 𝜇) + 𝜇 𝜙2

)]

+ 𝛬2
𝛽𝑞𝛽0𝛼𝑚𝜇𝑞𝜙3, and
𝜇2 𝑞 𝜇
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𝐴0 =
𝛬2

𝜇
𝜇2
𝑞𝜙1𝜙2𝜙3

(

1 − 𝑅2
0𝑚

)

.

Clearly, the coefficient 𝐴1 is always positive and 𝐴0 is positive if and only if 𝑅0𝑚 < 1. Thus, the quadratic Eq. (18) has a unique
positive solution given by 𝜆∗𝑚 = −𝐴0

𝐴1
when 𝑅0𝑚 > 1, which is feasible (or biologically meaningful). This indicates that the model

system (4) has a unique positive endemic equilibrium if 𝑅0𝑚 > 1. On the other hand, 𝐴0 ≥ 0 for 𝑅0𝑚 ≤ 1, as a result 𝜆∗𝑚 = −𝐴0
𝐴1

≤ 0,
which is not feasible biologically. As a result, the model system (4) has no positive endemic equilibrium when 𝑅0𝑚 ≤ 1. Furthermore,
the result shows that the system (4) has no chance of experiencing backward bifurcation. Consequently, we have established the
following result.

Theorem 3 (Existence of the Endemic Equilibrium). The malaria-only model (4) has
(i) a unique positive endemic equilibrium if 𝑅0𝑚 > 1,
(ii) no endemic equilibrium otherwise.

Global asymptotic stability of the endemic equilibrium of the malaria-only model
For 𝑅0𝑚 > 1, there exists a unique endemic equilibrium, 𝜖∗1𝑚, of the model system (4) accordingly Theorem 3. The following

result deals with global asymptotic stability of 𝜖∗1𝑚.

Theorem 4. For 𝑅0𝑚 > 1, the endemic equilibrium, 𝜖∗1𝑚 of the model system (4) is GAS in 𝛱𝑚 ⧵𝛱0
𝑚, 𝛱0

𝑚 =
{

(𝑆ℎ, 𝐸𝑚, 𝐼𝑚, 𝑅𝑚, 𝑆𝑞 , 𝐼𝑞) ∶
𝐸𝑚 = 𝐼𝑚 = 𝐼𝑞 = 0

}

.

Proof. Consider the following candidate for a Lyapunov function which is defined on an open set, 𝑈0
𝑚, containing origin:

𝛤𝑚(𝑆ℎ, 𝐸𝑚, 𝐼𝑚, 𝑅𝑚, 𝑆𝑞 , 𝐼𝑞) = 1
2

(

(𝑆ℎ − 𝑆∗
ℎ) + (𝐸𝑚 − 𝐸∗

𝑚) + (𝐼𝑚 − 𝐼∗𝑚) + (𝑅𝑚 − 𝑅∗
𝑚)
)2

+ 1
2

(

(𝑆𝑞 − 𝑆∗
𝑞 ) + (𝐼𝑞 − 𝐼∗𝑞 )

)2
, with its time derivative

𝑑 𝛤𝑚
𝑑 𝑡 =

(

𝑆ℎ + 𝐸𝑚 + 𝐼𝑚 + 𝑅𝑚 − (𝑆∗
ℎ + 𝐸∗

𝑚 + 𝐼∗𝑚 + 𝑅∗
𝑚)
)(𝑑 𝑆ℎ

𝑑 𝑡 +
𝑑 𝐸𝑚
𝑑 𝑡 +

𝑑 𝐼𝑚
𝑑 𝑡 +

𝑑 𝑅𝑚
𝑑 𝑡

)

+
(

𝑆𝑞 + 𝐼𝑞 − (𝑆∗
𝑞 + 𝐼∗𝑞 )

)(𝑑 𝑆𝑞

𝑑 𝑡 +
𝑑 𝐼𝑞
𝑑 𝑡

)

.
(19)

It is observed that the system of equations in (14) at the disease existing equilibrium point gives,
𝛬
𝜇

= 𝑆∗
ℎ + 𝐸∗

𝑚 + 𝐼∗𝑚 + 𝑅∗
𝑚,

𝛬𝑞

𝜇𝑞
= 𝑆∗

𝑞 + 𝐼∗𝑞 . (20)

Because model parameters and variables of infective classes are non-negative, combining the Eqs. (4), (5), (6), (19), (20), gives,
𝑑 𝛤𝑚
𝑑 𝑡 =

(

𝑁ℎ −
𝛬
𝜇

)(

𝛬 − 𝜇 𝑁ℎ

)

+
(

𝑁𝑞 −
𝛬𝑞

𝜇𝑞

)(

𝛬𝑞 − 𝜇𝑞𝑁𝑞

)

,

𝑑 𝛤𝑚
𝑑 𝑡 = −

(𝛬
𝜇

−𝑁ℎ

)(

𝛬 − 𝜇 𝑁ℎ

)

−
(𝛬𝑞

𝜇𝑞
−𝑁𝑞

)(

𝛬𝑞 − 𝜇𝑞𝑁𝑞

)

,

= −
(𝛬
𝜇

−𝑁ℎ

)

𝜇
(𝛬
𝜇

−𝑁ℎ

)

−
(𝛬𝑞

𝜇𝑞
−𝑁𝑞

)

𝜇𝑞
(𝛬𝑞

𝜇𝑞
−𝑁𝑞

)

= −
[

𝜇
(𝛬
𝜇

−𝑁ℎ

)2
+ 𝜇𝑞

(𝛬𝑞

𝜇𝑞
−𝑁𝑞

)2]
< 0.

As a result, 𝛤 ′
𝑚 < 0 in 𝛱𝑚 ⧵𝛱0

𝑚 when 𝑅0𝑚 > 1. Since 𝛤𝑚 is a well-defined candidate for the Lyapunov function in 𝛱𝑚 and by Lasalle’s
nvariance Principle [68], we conclude that 𝜖∗1𝑚 is GAS when 𝑅0𝑚 > 1. This result indicates that every trajectory of the model (4)

solutions with initial population sizes in 𝛱𝑚 ⧵𝛱0
𝑚, eventually moves towards the respective unique endemic equilibrium, 𝜖∗1𝑚, of the

model for 𝑅0 > 1. In biological terms, the malaria infection will endure within the population as long as if 𝑅0𝑚 > 1. □.

Sensitivity analysis of the malaria-only model
In this section, we carry out sensitivity analysis for 𝑅0𝑚 using a normalized forward sensitivity index to identify parameters that

ignificantly influence 𝑅0𝑚. This helps in determining appropriate intervention strategies to reduce the spread of malaria. We use
he method presented in [69–72] to compute the normalized forward sensitivity index of 𝑅0𝑚 with respect to a given parameter 𝑝,

as follows.

𝛶𝑅0𝑚
𝑝 =

𝜕 𝑅0𝑚
𝜕 𝑝 ×

𝑝
𝑅0𝑚

. (21)

The parameter values for performing sensitivity analysis of 𝑅0𝑚 are provided in Table 1. Using relation (21), the sensitivity index for
each parameter of 𝑅0𝑚 is determined and presented in Table 2 in descending order of sensitivity, with the most sensitive parameter
listed first.

Thus, it can be seen in Table 2 that the parameters 𝛽0, 𝛽𝑞 , 𝛽ℎ𝑚, 𝛬𝑞 , 𝛼𝑚 and 𝜇 have positive impact on 𝑅0𝑚. Conversely, the
parameters 𝜇 , 𝛬 and 𝛾 have negative influence on value of 𝑅 .
𝑞 𝑚 0𝑚
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Table 2
Sensitivity indices of 𝑅0𝑚 to parameters in
malaria only model (4) using parameter values
in the Table 1.

Parameter Value Sensitivity index

𝛽0 1 1
𝜇𝑞

1
15

−1
𝛽ℎ𝑚 0.0044 0.5
𝛽𝑞 0.0044 0.5
𝛬 𝜇 ×𝑁ℎ(0) −0.5
𝛬𝑞 𝜇𝑞 ×𝑁𝑞 (0) 0.5
𝛾𝑚 0.00014 −0.3908
𝜇 1

70×365
0.3905

𝛼𝑚 0.0833 0.0002

For instance, if 𝛽0 is increased or decreased by 𝑥%, then 𝑅0 will also increase or decrease by 𝑥%. Also, decreasing value of 𝛽ℎ𝑚 by
10% would decrease value of 𝑅0𝑚 by 5.1309%. In contrast, increasing value of 𝜇𝑞 by 10% would decrease value of 𝑅0𝑚 by 4.6491%.
Furthermore, based on the results in Table 2 the parameters that have a high impact on 𝑅0𝑚 are; 𝛽0, 𝛽ℎ𝑚, 𝛽𝑞 and 𝜇𝑞 , whereas the
parameter 𝛼𝑚 has the lowest impact on it. This shows that controlling the mosquito biting rate or transmission rate among humans
and infected mosquitoes will effectively reduce the spread of malaria. Also, control strategies that increase the natural mortality
rates of mosquitoes will be effective in reducing the spread of the malaria epidemic in a community. Moreover, the impact of the
most influencing parameters on 𝑅0𝑚 is demonstrated graphically in Section ‘‘Impact of 𝛽0, 𝛽ℎ𝑚, 𝜇𝑞 on 𝑅0𝑚’’.

Leptospirosis-only model

The leptospirosis only model is obtained by setting 𝐸𝑚(𝑡) = 𝐼𝑚(𝑡) = 𝐼𝑚𝑙(𝑡) = 𝑅𝑚(𝑡) = 𝑅𝑚𝑙(𝑡) = 𝑆𝑞(𝑡) = 𝐼𝑞(𝑡) = 0 in (3), given by

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑑 𝑆ℎ
𝑑 𝑡 = 𝛬 + 𝜌𝑙𝑅𝑙 − (𝜆𝑙 + 𝜇)𝑆ℎ,

𝑑 𝐸𝑙
𝑑 𝑡 = 𝜆𝑙𝑆ℎ − (𝛼𝑙 + 𝜇)𝐸𝑙 ,

𝑑 𝐼𝑙
𝑑 𝑡 = 𝛼𝑙𝐸𝑙 − (𝛾𝑙 + 𝜇)𝐼𝑙 ,

𝑑 𝑅𝑙
𝑑 𝑡 = 𝛾𝑙𝐼𝑙 − (𝜌𝑙 + 𝜇)𝑅𝑙 ,

𝑑 𝑆𝑟
𝑑 𝑡 = 𝛬𝑟 −

( 𝛽𝑟𝐵
𝜅 + 𝐵

+ 𝜇𝑟
)

𝑆𝑟,

𝑑 𝐼𝑟
𝑑 𝑡 =

𝛽𝑟𝐵
𝜅 + 𝐵

𝑆𝑟 − 𝜇𝑟𝐼𝑟,

𝑑 𝐵
𝑑 𝑡 = 𝜖1𝐼𝑙 + 𝜖3𝐼𝑟 − 𝜇𝑏𝐵 ,

(22)

where, 𝜆𝑙 =
𝛽ℎ𝑒𝐵
𝜅+𝐵 + 𝛽ℎ𝑟𝐼𝑟. The biologically feasible region for the model (22) is given by

𝛱𝑙 =
{

(𝑆ℎ, 𝐸𝑙 , 𝐼𝑙 , 𝑅𝑙 , 𝑆𝑟, 𝐼𝑟, 𝐵) ∈ 𝑅7
+ ∶ 𝑁ℎ ≤ 𝛬

𝜇
, 𝑁𝑟 ≤

𝛬𝑟
𝜇𝑟

, 𝐵 ≤ 𝜖∗

𝜇𝑏

(

𝛬
𝜇

+
𝛬𝑟
𝜇𝑟

)

}

, (23)

such that every solution of the system (22) starting in 𝛱𝑙 remain in 𝛱𝑙 for all 𝑡 ≥ 0 [47,50], where, 𝜖∗ = max{𝜖1, 𝜖2}. Thus, the
region 𝛱𝑙 attracts all solutions of the system (22), and it suffices to consider the dynamics of the system (22) in 𝛱𝑙.

Stability of the DFE of the leptospirosis-only model
The DFE of the leptospirosis-only model system (22) is obtained by setting each of the equations of the system (22) to zero and

olving for 𝑆ℎ and 𝑆𝑟. Thus, the DFE point of the system (22) is given by

𝜖∗0𝑙 =
(

𝑆∗
ℎ , 0, 0, 0, 𝑆∗

𝑟 , 0
)

=
(

𝛬
𝜇
, 0, 0, 0,

𝛬𝑟
𝜇𝑟

, 0, 0
)

. (24)

By applying the method of the next-generation matrix [67] to the system (22), the associated basic reproduction number (𝑅0𝑙) is
derived as follows: The associated Jacobian matrices of 𝐹 and 𝑉 at 𝜖∗0𝑙 are given by

𝐹 =

⎛

⎜

⎜

⎜

⎜

0 0 𝛽ℎ𝑟𝛬
𝜇

𝛽ℎ𝑒𝛬
𝜅 𝜇

0 0 0 0
0 0 0 𝛽𝑟𝛬𝑟

𝜇𝑟

⎞

⎟

⎟

⎟

⎟

, and 𝑉 =

⎛

⎜

⎜

⎜

⎜

(𝛼𝑙 + 𝜇) 0 0 0
−𝛼𝑙 (𝛾𝑙 + 𝜇) 0 0
0 0 𝜇𝑟 0

⎞

⎟

⎟

⎟

⎟

⎝0 0 0 0 ⎠ ⎝

0 −𝜖1 −𝜖3 𝜇𝑏⎠
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Therefore, the basic reproduction number of the leptospirosis only model (22) given by

𝑅0𝑙 = 𝜌(𝐹 𝑉 −1) = 1
2

(

(𝑅𝑒
0𝑙 ℎ + 𝑅0𝑙 𝑟) +

√

(𝑅𝑒
0𝑙 ℎ + 𝑅0𝑙 𝑟)2 + 4𝑅𝑟

0𝑙 ℎ𝑅𝑟𝑒
0𝑙 ℎ

)

, (25)

where, 𝑅𝑒
0𝑙 ℎ = 𝛽ℎ𝑒𝛬𝛼𝑙𝜖1

𝜅 𝜇 𝜇𝑏(𝛼𝑙+𝜇)(𝛾𝑙+𝜇) , 𝑅0𝑙 𝑟 = 𝛽𝑟𝛬𝑟𝜖3
𝜅 𝜇2𝑟 𝜇𝑏 , 𝑅𝑟

0𝑙 ℎ = 𝛽ℎ𝑟𝛬𝛼𝑙
𝜇(𝛼𝑙+𝜇)(𝛾𝑙+𝜇)

, and 𝑅𝑟𝑒
0𝑙 ℎ = 𝛽𝑟𝛬𝑟𝜖𝑙

𝜅 𝜇2𝑟 𝜇𝑏 . According to Theorem 2 in [67], the local stability
f DFE is given by the following result.

Theorem 5. The DFE, 𝜖∗0𝑙, of leptospirosis-only model system (22) is locally asymptotically stable if 𝑅0𝑙 < 1 and unstable if 𝑅0𝑙 > 1.

Global stability of the DFE of the leptospirosis-only model
We shall use the method illustrated in [70,73,74] to investigate the global asymptotic stability (GAS) of DFE point of the model

ystem (22). First, the model (22) should be written in the form:

⎧

⎪

⎨

⎪

⎩

𝑑 𝑉
𝑑 𝑡 = 𝐺(𝑉 , 𝑊 ),

𝑑 𝑊
𝑑 𝑡 = 𝐻(𝑉 , 𝑊 ), 𝐻(𝑉 , 0) = 0.

(26)

where 𝑉 = (𝑆ℎ, 𝑅𝑙 , 𝑆𝑟), represents uninfected classes and 𝑊 = (𝐸𝑙 , 𝐼𝑙 , 𝐼𝑟, 𝐵) denotes the infected compartments including the class of
pathogens. The DFE point, 𝜖∗0𝑙, of the system (22) is guaranteed to be GAS if 𝑅0𝑙 < 1 (which is locally asymptotically stable (LAS))
and the following two conditions 𝐶1 and 𝐶2 hold:

𝐶1: For 𝑑 𝑉
𝑑 𝑡 = 𝐺(𝑉 , 0), if 𝑉 ∗

0 =
(

𝛬
𝜇 , 0,

𝛬𝑟
𝜇𝑟

)

is GAS, where, 𝑉 ∗
0 denotes the DFE of this system.

𝐶2: 𝐻(𝑉 , 𝑊 ) = 𝐷 𝑊 − 𝐻★(𝑉 , 𝑊 ), 𝐻★(𝑉 , 𝑊 ) ≥ 0,∀(𝑉 , 𝑊 ) ∈ 𝛱𝑙, where 𝐷 =
𝜕 𝐻(𝑉 ∗

0 ,0)
𝜕 𝑊 is a Metzler matrix. Note that

𝑉 ∗
0 , 0) = 𝜖∗0𝑙 =

(

𝛬
𝜇 , 0, 0, 0,

𝛬𝑟
𝜇𝑟
, 0, 0

)

.

Theorem 6. The DFE, 𝜖∗0𝑙, given by (24), is GAS for the model (22) if 𝑅0𝑙 < 1.

Proof. We simply need to show that the conditions 𝐶1 and 𝐶2 hold provided that 𝑅0𝑙 < 1. Substituting 𝐸𝑙 = 𝐼𝑙 = 𝐼𝑟 = 𝐵 = 0 into the
ystem (22), yields

𝐺(𝑉 , 0) =
⎛

⎜

⎜

⎝

𝑆′
ℎ(𝑡)

𝑅′
𝑙(𝑡)

𝑆′
𝑟(𝑡)

⎞

⎟

⎟

⎠

=
⎛

⎜

⎜

⎝

𝛬 + 𝜌𝑙𝑅𝑙 − 𝜇 𝑆ℎ
−(𝜌𝑙 + 𝜇)𝑅𝑙
𝛬𝑟 − 𝜇𝑟𝑆𝑟

⎞

⎟

⎟

⎠

, 𝑉 ∗
0 =

(

𝛬
𝜇
, 0,

𝛬𝑟
𝜇𝑟

)

. (27)

Note that the 2nd and the 3rd equations of (27) are linear ODEs and their solutions can be easily found as:

𝑅𝑙(𝑡) = 𝑅𝑙(0)𝑒−(𝜌𝑙+𝜇)𝑡, 𝑆𝑟(𝑡) =
𝛬𝑟
𝜇𝑟

(

1 − 𝑒−𝜇𝑟𝑡
)

+ 𝑆𝑟(0)𝑒−𝜇𝑟𝑡. (28)

Also, from Eqs. (27) and (28), we get

𝑆′
ℎ(𝑡) = 𝛬 + 𝜎 𝑅𝑙(0)𝑒−(𝜌𝑙+𝜇)𝑡 − 𝜇 𝑆ℎ(𝑡). (29)

Solving (29), gives

𝑆ℎ(𝑡) = 𝛬
𝜇

+ 𝑆ℎ(0)𝑒−𝜇 𝑡 − 𝑅𝑙(0)𝑒−(𝜌𝑙+𝜇)𝑡. (30)

Now, suppose that the time, 𝑡 → ∞, we need to show that 𝑉 → 𝑉 ∗
0 . Clearly, 𝑅𝑙(𝑡) → 0 and 𝑆𝑟(𝑡) →

𝛬𝑟
𝜇𝑟

as 𝑡 → ∞, regardless of the
initial population sizes 𝑅𝑙(0) and 𝑆𝑟(0). Thus, 𝑆ℎ(𝑡) →

𝛬
𝜇 = 𝑁ℎ, as 𝑡 → ∞, with the initial population size. Consequently, every point

with respect to this condition converges to 𝑉 ∗
0 =

(

𝛬
𝜇 , 0,

𝛬𝑟
𝜇𝑟

)

. Hence, 𝑉 ∗
0 =

(

𝛬
𝜇 , 0,

𝛬𝑟
𝜇𝑟

)

is GAS.
Next, we consider

𝐻(𝑉 , 𝑊 ) =

⎛

⎜

⎜

⎜

⎜

⎜

⎝

(

𝛽ℎ𝑒𝐵
𝜅+𝐵 + 𝛽ℎ𝑟𝐼𝑟

)

𝑆ℎ − (𝛼𝑙 + 𝜇)𝐸𝑙

𝛼𝑙𝐸ℎ − (𝛾𝑙 + 𝜇)𝐼𝑙
(

𝛽𝑟𝐵
𝜅+𝐵

)

𝑆𝑟 − 𝜇𝑟𝐼𝑟
𝜖1𝐼𝑙 + 𝜖2𝐼𝑟 − 𝜇𝑏𝐵

⎞

⎟

⎟

⎟

⎟

⎟

⎠

, thus, 𝐷 =

⎛

⎜

⎜

⎜

⎜

⎝

−(𝛼𝑙 + 𝜇) 0 𝛽ℎ𝑟𝛬
𝜇

𝛽ℎ𝑒𝛬
𝜅 𝜇

𝛼𝑙 −(𝛾𝑙 + 𝜇) 0 0
0 0 −𝜇𝑟

𝛽𝑟𝛬𝑟
𝛬𝑟𝜇𝑟

0 𝜖1 𝜖2 −𝜇𝑏

⎞

⎟

⎟

⎟

⎟

⎠

. (31)

Clearly 𝐷 is a Metzler matrix, and

𝐻★(𝑉 , 𝑊 ) = 𝐷 𝑊 −𝐻(𝑉 , 𝑊 ) =

⎛

⎜

⎜

⎜

⎜

⎜

𝛽ℎ𝑟𝐼𝑟
(

𝛬
𝜇 − 𝑆ℎ

)

+ 𝛽ℎ𝑒𝐵
𝜅

(

𝛬
𝜇 − 𝜅

𝜅+𝐵𝑆ℎ

)

0
𝛽𝑟𝐵
𝜅

(

𝛬𝑟
𝜇𝑟

− 𝜅
𝜅+𝐵𝑆𝑟

)

⎞

⎟

⎟

⎟

⎟

⎟

. (32)
⎝

0
⎠
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Since, 0 ≤ 𝜅
𝜅+𝐵𝑆ℎ ≤ 𝑆ℎ ≤ 𝛬

𝜇 (∵ 𝜅
𝜅+𝐵 ≤ 1), 𝛽ℎ𝑟𝐼𝑟

(

𝛬
𝜇 − 𝑆ℎ

)

+ 𝛽ℎ𝑒𝐵
𝜅

(

𝛬
𝜇 − 𝜅

𝜅+𝐵𝑙
𝑆ℎ

)

≥ 0. In the same manner, 𝛽𝑟𝐵
𝜅

(

𝛬𝑟
𝜇𝑟

− 𝜅
𝜅+𝐵𝑆𝑟

)

≥ 0.

Hence, 𝐻★(𝑉 , 𝑊 ) ≥ 0 ∀(𝑉 , 𝑊 ) ∈ 𝛱𝑙. Thus, 𝜖∗0𝑙 =
(

𝛬
𝜇 , 0, 0, 0,

𝛬𝑟
𝜇𝑟
, 0, 0

)

is GAS.
Epidemiologically, it recommends that the leptospirosis infection can be eliminated from a population as long as, for 𝑅0𝑙 < 1.

Furthermore, the result shows that the system (22) has no chance of experiencing backward bifurcation at 𝑅0𝑙 = 1 when 𝑅0𝑙 < 1
since DFE is the only positive (stable) equilibrium point for 𝑅0𝑙 < 1. □

Existence of the endemic equilibrium of the leptospirosis-only model
Solving the leptospirosis-only model (22) at disease existing equilibrium denoted by 𝜖∗1𝑙 =

(

𝑆∗
ℎ , 𝐸∗

𝑙 , 𝐼∗𝑙 , 𝑅∗
𝑙 , 𝑆∗

𝑟 , 𝐼∗𝑟 , 𝐵∗), gives,
𝑆∗
ℎ =

𝛬𝐽3+𝛾𝑙𝜌𝑙𝐼∗𝑙
𝐽3(𝜆∗𝑙 +𝜇)

, 𝐸∗
𝑙 = 𝐽2

𝛼𝑙
𝐼∗𝑙 , 𝑅∗

𝑙 = 𝛾𝑙
𝐽3
𝐼∗𝑙 , 𝑆∗

𝑟 = 𝛬𝑟𝛽ℎ𝑒
𝛽𝑟𝛷+𝜇𝑟𝛽ℎ𝑒

,

𝐼𝑟 =
𝛬𝑟𝛽ℎ𝑒𝛷

𝜇𝑟
(

𝛽𝑟𝛷 + 𝜇𝑟𝛽ℎ𝑒
) , 𝐼𝑙 =

𝛬𝛼𝑙𝐽1𝜆∗𝑙𝛷

𝜇 𝐽1𝐽2𝐽3 +
(

𝐽1𝐽2𝐽3 − 𝛼𝑙𝜌𝑙𝛾𝑙
)

𝜆∗𝑙
, 𝐵 = 1

𝜇𝑏
(𝜖1𝐼𝑙 + 𝜖3𝐼𝑟), (33)

where, 𝜆∗𝑙 = 𝛷 + 𝛽ℎ𝑟𝐼𝑟, 𝛷 = 𝛽ℎ𝑒𝐵
𝜅+𝐵 , 𝐽1 = 𝛼𝑙 + 𝜇 , 𝐽2 = 𝛾𝑙 + 𝜇 , 𝐽3 = 𝜌𝑙 + 𝜇.

We demonstrate the existence and local stability of the endemic equilibrium of the leptospirosis-only model based on the direction
of bifurcation. The direction of bifurcation can be illustrated using the center manifold method introduced in [75]. Let us consider
the following change for the variables of the system (22). Let

(

𝑆ℎ, 𝐸𝑙 , 𝐼𝑙 , 𝑅𝑙 , 𝑆𝑟, 𝐼𝑟, 𝐵
)𝑇 =

(

𝑥1, 𝑥2, 𝑥3, 𝑥4, 𝑥5, 𝑥6, 𝑥7
)𝑇 = 𝐗. Thus, the

system (22) can be rewritten in the form as
𝑑𝐗
𝑑 𝑡 = 𝐹 (𝐗),with 𝐹 = (𝑓1, 𝑓2, 𝑓3, 𝑓4, 𝑓5, 𝑓6, 𝑓7)𝑇 . (34)

Hence, Eq. (22) can be expressed as:

⎧

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎪

⎩

𝑑 𝑥1
𝑑 𝑡 = 𝑓1 = 𝛬 + 𝜌𝑙𝑥4 −

( 𝛽ℎ𝑒𝑥7
𝜅 + 𝑥7

+ 𝛽ℎ𝑟𝑥6 + 𝜇
)

𝑥1,

𝑑 𝑥2
𝑑 𝑡 = 𝑓2 =

( 𝛽ℎ𝑒𝑥7
𝜅 + 𝑥7

+ 𝛽ℎ𝑟𝑥6
)

𝑥1 − (𝛼𝑙 + 𝜇)𝑥2,

𝑑 𝑥3
𝑑 𝑡 = 𝑓3 = 𝛼𝑙𝑥2 − (𝛾𝑙 + 𝜇)𝑥3,

𝑑 𝑥4
𝑑 𝑡 = 𝑓4 = 𝛾𝑙𝑥3 − (𝜌𝑙 + 𝜇)𝑥4,

𝑑 𝑥5
𝑑 𝑡 = 𝑓5 = 𝛬𝑟 −

( 𝛽𝑟𝑥7
𝜅 + 𝑥7

+ 𝜇𝑟
)

𝑥5,

𝑑 𝑥6
𝑑 𝑡 = 𝑓6 =

( 𝛽𝑟𝑥7
𝜅 + 𝑥7

)

𝑥5 − 𝜇𝑟𝑥6,

𝑑 𝑥7
𝑑 𝑡 = 𝑓7 = 𝜖1𝑥3 + 𝜖3𝑥6 − 𝜇𝑏𝑥7.

(35)

Taking 𝛽ℎ𝑒 as bifurcation parameter and solving for 𝛽ℎ𝑒 = 𝛽∗ℎ𝑒 at 𝑅0𝑙 = 1, from (25) gives that

𝛽∗ℎ𝑒 =
[

1 − (

𝑅𝑒
0𝑙 ℎ + 𝑅0𝑙 𝑟 + 𝑅𝑟

0𝑙 ℎ𝑅𝑟𝑒
0𝑙 ℎ

)

]𝜅 𝜇 𝜇𝑏(𝛼𝑙 + 𝜇)(𝛾𝑙 + 𝜇)
𝛬𝛼𝑙𝜖1

, (36)

where, 𝑅𝑒
0𝑙 ℎ + 𝑅0𝑙 𝑟 + 𝑅𝑟

0𝑙 ℎ𝑅𝑟𝑒
0𝑙 ℎ = 1 for 𝑅0𝑙 = 1. Note that Eq. (25) satisfies

𝑅2
0𝑙 =

(

𝑅𝑒
0𝑙 ℎ + 𝑅0𝑙 𝑟

)

𝑅0𝑙 + 𝑅𝑟
0𝑙 ℎ𝑅𝑟𝑒

0𝑙 ℎ, and 𝑅𝑒
0𝑙 ℎ + 𝑅0𝑙 𝑟 + 𝑅𝑟

0𝑙 ℎ𝑅𝑟𝑒
0𝑙 ℎ = 1, at 𝑅0𝑙 = 1. (37)

The Jacobian matrix of the system (35) at (𝜖∗0𝑙 , 𝛽∗ℎ𝑒) is obtained as

𝐽 (𝜖∗0𝑙 , 𝛽∗ℎ𝑒) =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

−𝜇 0 0 𝜌𝑙 0 − 𝛽ℎ𝑟𝛬
𝜇 −

𝛽∗ℎ𝑒𝛬
𝜅 𝜇

0 −𝐽1 0 0 0 𝛽ℎ𝑟𝛬
𝜇

𝛽∗ℎ𝑒𝛬
𝜅 𝜇

0 𝛼𝑙 −𝐽2 0 0 0 0
0 0 𝛾𝑙 −𝐽3 0 0 0
0 0 0 0 −𝜇𝑟 0 − 𝛽𝑟𝛬𝑟

𝜅 𝜇𝑟
0 0 0 0 0 −𝜇𝑟

𝛽𝑟𝛬𝑟
𝜅 𝜇𝑟

0 0 𝜖1 0 0 𝜖3 −𝜇𝑏

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

,

where, 𝐽1 = 𝛼𝑙 +𝜇 , 𝐽2 = 𝛾𝑙 +𝜇 , 𝐽3 = 𝜌𝑙 +𝜇. Thus, the characteristic polynomial equation of 𝐽 (𝜖∗0𝑙 , 𝛽∗ℎ𝑒) is given by ∣ 𝐽 (𝜖∗0𝑙 , 𝛽∗ℎ𝑒) −𝜆𝐼7×7 ∣=
0 ⇔ 𝜆(𝜆 + 𝜇)(𝜆 + 𝜇𝑟)(𝜆 + (𝜌𝑙 + 𝜇))(𝑃 (𝜆)) = 0, where,

𝑃 (𝜆) = 𝜆3 +𝑄1𝜆
2 +𝑄2𝜆 +𝑄3, (38)

with,

𝑄 = 𝐽 + 𝐽 + 𝜇 + 𝜇 ,
1 1 2 𝑟 𝑏
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𝑄2 = 𝐽1(𝐽2 + 𝜇𝑟 + 𝜇𝑏) + 𝐽2(𝜇𝑟 + 𝜇𝑏) + 𝜇𝑟𝜇𝑏 +
𝛽𝑟𝛬𝑟
𝜅 𝜇𝑟

𝜖3,

𝑄3 = 𝐽1𝐽2𝜇𝑟 + 𝐽1𝐽2𝜇𝑏 + 𝐽1𝜇𝑟𝜇𝑏 + 𝐽2𝜇𝑟𝜇𝑏 − 𝐽1
𝛽𝑟𝛬𝑟
𝜅 𝜇𝑟

𝜖3 − 𝛼𝑙𝜖1
𝛽∗ℎ𝑒𝛬
𝜅 𝜇 − 𝐽2

𝛽𝑟𝛬𝑟
𝜅 𝜇𝑟

𝜖3

= 𝐽1𝐽2𝜇𝑟 + 𝐽1𝐽2𝜇𝑏
(

1 − 𝑅𝑒
0𝑙 ℎ

)

+ 𝜇𝑟𝜇𝑏(𝐽1 + 𝐽2)
(

1 − 𝑅0𝑙 𝑟
)

.

Clearly, 𝜆1 = 0, 𝜆2 = −𝜇 , 𝜆3 = −𝜇𝑟, 𝜆4 = −(𝜌𝑙 + 𝜇) are the four eigenvalues of 𝐽 (𝜖∗0𝑙 , 𝛽∗ℎ𝑒). Because each of the model parameters is
on-negative, and 𝑅𝑒

0𝑙 ℎ < 1, 𝑅0𝑙 𝑟 < 1, at 𝑅0𝑙 = 1, it follows that 𝑄1 > 0, 𝑄2 > 0, 𝑄3 > 0 and 𝑄1𝑄2 −𝑄3 = 𝐽 2
1 (𝐽2 + 𝜇𝑟 + 𝜇𝑏 +

𝛽𝑟𝛬𝑟
𝜅 𝜇𝑟 𝜖3) +

𝐽2(𝑄2 − 𝜇𝑟𝜇𝑏) + (𝜇𝑟 + 𝜇𝑏)𝑄2 + (𝐽1 + 𝐽2)
𝛽𝑟𝛬𝑟
𝜅 𝜇𝑟 𝜖3 + 𝛼𝑙

𝛽∗ℎ𝑒𝛬
𝜅 𝜇 𝜖1 > 0. Thus, by Routh’s criterion, all roots of 𝑃 (𝜆) in (38) have negative real

parts. Consequently, 𝐽 (𝜖∗0𝑙 , 𝛽∗ℎ𝑒) has a simple zero eigenvalue with all other eigenvalues having a negative real part. Therefore, the
center manifold theory [76] can be used to study the dynamics of (35) near 𝛽∗ℎ𝑒. Now, following the approach in [75], 𝐽 (𝜖∗0𝑙 , 𝛽∗ℎ𝑒)
has a right eigenvector corresponding to zero eigenvalue, given by 𝜗 =

(

𝜗1, 𝜗2, 𝜗3, 𝜗4, 𝜗5, 𝜗6, 𝜗7
)𝑇 , where

𝜗1 = −[𝜇(𝛼𝑙𝛾𝑙 + 𝐽2𝐽3) + 𝛼𝑙𝐽3𝜇]
𝜇 𝐽2𝐽3

𝜗2 < 0, 𝜗2 = 𝜗2 > 0, 𝜗3 =
𝛼𝑙
𝐽2

𝜗2 > 0, 𝜗4 =
𝛾𝑙
𝐽3

𝜗3 > 0,

𝜗5 =
𝛽𝑟𝛬𝑟𝛼𝑙𝜖1

𝜅 𝜇𝑏𝜇2
𝑟𝐽2(𝑅0𝑙 𝑟 − 1)𝜗2 < 0(∵𝑅0𝑙 𝑟 − 1 < 0, for 𝑅0𝑙 = 1), 𝜗6 = −𝜗5 > 0, 𝜗7 = − 𝜅 𝜇2

𝑟
𝛽𝑟𝛬𝑟

𝜗5 > 0.

Also, 𝐽 (𝜖∗0𝑙 , 𝛽∗ℎ𝑒) has a left eigenvector, 𝜄 =
(

𝜄1, 𝜄2, 𝜄3, 𝜄4, 𝜄5, 𝜄6, 𝜄7
)𝑇 associated with 𝜆 = 0, satisfying 𝜗.𝜄 = 1, with

𝜄1 = 0, 𝜄2 = 𝜄2 > 0, 𝜄3 =
𝐽1
𝛼𝑙

𝜄2 > 0, 𝜄4 = 0, 𝜄5 = 0, 𝜄6 =
𝛽ℎ𝑟𝛬𝛼𝑙𝜖1 + 𝐽1𝐽2𝜇 𝜖3

𝛼𝑙𝜇 𝜖1𝜇𝑟
𝜄2 > 0, 𝜄7 =

𝐽1𝐽2
𝛼𝑙𝜖1

𝜄2 > 0.

By computing non-zero partial derivatives of 𝑓 at 𝜖∗0𝑙, the bifurcation constants defined by

𝑎 =
𝑛
∑

𝑘,𝑖,𝑗=1
𝜄𝑘𝜗𝑖𝜗𝑗

𝜕2𝑓𝑘
𝜕 𝑥𝑖𝜕 𝑥𝑗

(𝜖∗0𝑙 , 𝛽∗ℎ𝑒) and 𝑏 =
𝑛
∑

𝑘,𝑖=1
𝜄𝑘𝜗𝑖

𝜕2𝑓𝑘
𝜕 𝑥𝑖𝛽∗ℎ𝑒

(𝜖∗0𝑙 , 𝛽∗ℎ𝑒),

are given by

𝑎 = −
𝜄2𝜗22

𝐽2𝜇𝑏(1 − 𝑅0𝑙 𝑟)
[ 𝛼𝑙𝜖1(𝛽ℎ𝑟𝛽𝑟 + 𝜅 𝜇2

𝑟 )[𝜇(𝛼𝑙𝛾𝑙 + 𝐽2𝐽3) + 𝛼𝑙𝐽3𝜇]
𝜅 𝜇𝑏𝜇2

𝑟𝐽2(1 − 𝑅0𝑙 𝑟)
+

2𝛽∗ℎ𝑟𝛬(𝜖1𝛼𝑙)
2

𝜅2𝜇𝑏𝜇(1 − 𝑅0𝑙 𝑟)
+

𝛽ℎ𝑟𝛬𝛼𝑙 + 𝐽1𝐽2𝐽3
𝜇

+
𝛽𝑟𝛬𝑟𝛼𝑙𝜖1(𝛽𝑟 + 2𝜇𝑟)

(𝜅 𝜇𝑟)2
]

< 0, and

𝑏 = 𝜄2𝜗7
𝜕2𝑓2

𝜕 𝑥7𝜕 𝛽∗ℎ𝑒
(𝜖∗0𝑙 , 𝛽∗ℎ𝑒) = 𝜄2𝜗7

𝛽∗ℎ𝑒𝛬
𝜅 𝜇 > 0, (always ).

Based on the computed values of 𝑎 < 0 and 𝑏 > 0, it follows from Theorem 4.1 in [75] that the leptospirosis-only model (22) will
exhibit forward bifurcation at 𝑅0𝑙 = 1. As a result, the model’s endemic equilibrium exists, is unique, and is locally and globally
asymptotically stable [77,78]. This means that the disease can be eliminated from the population in the long term, if 𝑅0𝑙 < 1.
Moreover, the result for the global asymptotic stability of 𝜖∗1𝑙 is summarized below, with the proof provided.

Lemma 1. The unique endemic equilibrium, 𝜖∗1𝑙, of the leptospirosis-only model (22) is GAS in 𝛱𝑙 ⧵ 𝛱0
𝑙 provided that 𝑅0𝑙 > 1,

𝛱0
𝑙 =

{

(𝑆ℎ, 𝐸𝑙 , 𝐼𝑙 , 𝑅𝑙 , 𝑆𝑟, 𝐼𝑟, 𝐵) ∶ 𝐸𝑙 = 𝐼𝑙 = 𝐼𝑟 = 𝐵 = 0
}

.

Proof. Consider the following candidate for a Lyapunov function: 𝛤𝑙(𝑆ℎ, 𝐸𝑙 , 𝐼𝑙 , 𝑅𝑙 , 𝑆𝑟, 𝐼𝑟, 𝐵) = 1
2

(

(𝑆ℎ − 𝑆∗
ℎ) + (𝐸𝑙 − 𝐸∗

𝑙 ) + (𝐼𝑙 − 𝐼∗𝑙 ) +
(𝑅𝑙 − 𝑅∗

𝑙 )
)2

+ 1
2

(

(𝑆𝑟 − 𝑆∗
𝑟 ) + (𝐼𝑟 − 𝐼∗𝑟 )

)2
+ 1

2

(

𝐵 − 𝐵∗
)2

, with its time derivative :
𝑑 𝛤𝑙
𝑑 𝑡 =

(

𝑆ℎ + 𝐸𝑙 + 𝐼𝑙 + 𝑅𝑙 − (𝑆∗
ℎ + 𝐸∗

𝑙 + 𝐼∗𝑙 + 𝑅∗
𝑙 )
)(𝑑 𝑆ℎ

𝑑 𝑡 +
𝑑 𝐸𝑙
𝑑 𝑡 +

𝑑 𝐼𝑙
𝑑 𝑡 +

𝑑 𝑅𝑙
𝑑 𝑡

)

+
(

𝑆𝑟 + 𝐼𝑟 − (𝑆∗
𝑟 + 𝐼∗𝑟 )

)(𝑑 𝑆𝑟
𝑑 𝑡 +

𝑑 𝐼𝑟
𝑑 𝑡

)

+ (𝐵 − 𝐵∗)𝑑 𝐵
𝑑 𝑡 .

(39)

Solving the system (22) at 𝜖∗1𝑙 yields,

𝛬
𝜇

= 𝑆∗
ℎ + 𝐸∗

𝑙 + 𝐼∗𝑙 + 𝑅∗
𝑙 ,

𝛬𝑟
𝜇𝑟

= 𝑆∗
𝑟 + 𝐼∗𝑟 . (40)

Since, 𝑁ℎ ≤ 𝛬
𝜇 , 𝑁𝑟 ≤ 𝛬𝑟

𝜇𝑟
, and 𝐵 ≤ 𝜖∗

(

𝛬
𝜇 + 𝛬𝑟

𝜇𝑟

)

, where 𝜖∗ = max{𝜖1, 𝜖2} (see Eq. (23)), combining, the Eqs. (2), (22), (39), (40),
yields,

𝑑 𝛤𝑙
𝑑 𝑡 =

(

𝑁ℎ −
𝛬
𝜇

)(

𝛬 − 𝜇 𝑁ℎ

)

+
(

𝑁𝑟 −
𝛬𝑟
𝜇𝑟

)(

𝛬𝑟 − 𝜇𝑟𝑁𝑟

)

+
[

𝐵 − 𝜖∗
(𝛬
𝜇

+
𝛬𝑟
𝜇𝑟

)][

𝜖∗
(𝛬
𝜇

+
𝛬𝑟
𝜇𝑟

)

− 𝐵
]

= −
(𝛬 −𝑁ℎ

)

𝜇
(𝛬 −𝑁ℎ

)

−
(𝛬𝑟 −𝑁𝑟

)

𝜇𝑟
(𝛬𝑟 −𝑁𝑟

)

−
[

𝜖∗
(𝛬 +

𝛬𝑟
)

− 𝐵
][

𝜖∗
(𝛬 +

𝛬𝑟
)

− 𝐵
]

𝜇 𝜇 𝜇𝑟 𝜇𝑟 𝜇 𝜇𝑟 𝜇 𝜇𝑟
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Table 3
Sensitivity indices of 𝑅0𝑙 to parameters in leptospirosis-
only model (22) using parameter values in the Table 1.

Parameter Value Sensitivity index

𝜖1 log10(8.1 × 108) 0.9987
𝛬 𝜇 ×𝑁ℎ(0) 0.9987
𝛽ℎ𝑒 0.00047 0.9975
𝜇𝑏 0.05 −0.9989
𝜅 7000 −0.9989
𝛾𝑙 0.0027 −0.9846
𝜇 1

70×365
−1.0260

𝛼𝑙 0.003 0.0129
𝜇𝑟 0.015 −0.0023
𝛽𝑟 0.000003 0.0012
𝛬𝑟 0.285 0.0012
𝛽ℎ𝑟 0.0004 0.001
𝜖3 log10(8.1 × 108) 0.00003427

= −
[

𝜇
(𝛬
𝜇

−𝑁ℎ

)2
+ 𝜇𝑟

(𝛬𝑟
𝜇𝑟

−𝑁𝑟

)2]
+
[

(

𝜖∗
(𝛬
𝜇

+
𝛬𝑟
𝜇𝑟

)

− 𝐵
)2

]

< 0.

As a result, 𝑑 𝛤𝑙
𝑑 𝑡 < 0 in 𝛱𝑙 ⧵𝛱0

𝑙 and for 𝑅0𝑙 > 1. Since 𝛤𝑙 is a well-defined candidate for the Lyapunov function, we conclude that
the endemic equilibrium is GAS whenever 𝑅0𝑙 > 1. This indicates that every trajectory of the model solutions in the long run moves
towards the unique 𝜖∗1𝑙 in 𝛱𝑙 ⧵𝛱0

𝑙 , as 𝑡 → ∞.

Sensitivity analysis of the leptospirosis-only model
In this section, we perform the sensitivity analysis for 𝑅0𝑙 using a normalized forward sensitivity index to determine the

parameters that have a high impact on 𝑅0𝑙, which helps in providing appropriate control measures in reducing the spread of
leptospirosis. Using the relation (21) the sensitivity index to each parameter of 𝑅0𝑚 are given and arranged in Table 3 from the
most sensitive parameter to the least sensitive.

From Table 3, we noticed that the parameters 𝜖1, 𝛽ℎ𝑒, 𝜇𝑏 have the most significant influences on 𝑅0𝑙 compared to others. For
instance, decreasing the value of 𝛽ℎ𝑒 by 15% would result in a decrease in the value of 𝑅0𝑙 by 14.961%. Likewise, decreasing or
increasing the value of 𝜖1 by 15% would result in a decrease or increase in the value of 𝑅0𝑙 by 14.982%. In contrast, increasing the
value of 𝜇𝑏 by 10% would decrease value of 𝑅0𝑙 by 9.0788%. The sensitivity analysis of the leptospirosis-only model indicates that
controlling the transmission rate among humans and contaminated environments will effectively reduce the spread of leptospirosis
and leptospirosis-malaria co-infection. Also, control strategies that increase the natural removal rate of pathogens in the environment
will be effective in reducing the spread of the epidemic in the community.

Malaria-leptospirosis model

The feasible region for system (3) is defined by 𝛱𝑚𝑙 = 𝛱𝑚 × 𝛱𝑙, with 𝛱𝑚 and 𝛱𝑙 as specified in previous sections. Following
the standard technique [47,50], it can be easily proved that every solution of the co-infection malaria-leptospirosis model (3) with
non-negative initial conditions remain non-negative for all time 𝑡 ≥ 0. Moreover, every solution on the boundary of 𝛱𝑚𝑙 eventually
enter its interior [66]. Thus, 𝛱𝑚𝑙 is positively invariant and attracts all solutions of (3) (so that, it is sufficient to study the dynamics
f the system (3) in 𝛱𝑚𝑙.

Stability of the disease-free equilibrium malaria-leptospirosis model
The malaria -leptospirosis model (3) has a disease-free equilibrium (DFE), given by

𝜖∗0𝑚𝑙 =
(

𝑆∗
ℎ , 0, 0, 0, 0, 0, 0, 0, 0, 𝑆∗

𝑞 , 0, 𝑆∗
𝑟 , 0, 0

)

=
(

𝛬
𝜇
, 0, 0, 0, 0, 0, 0, 0, 0,

𝛬𝑞

𝜇𝑞
, 0,

𝛬𝑟
𝜇𝑟

, 0, 0
)

. (41)

By applying the next-generation matrix approach (as described in previous selections a and a, the associated reproduction number
for the full malaria-leptospirosis model (3) (denoted by 𝑅0𝑚𝑙) is given by

𝑅0𝑚𝑙 = max{𝑅0𝑚, 𝑅0𝑙}, (42)

where, 𝑅0𝑚 the associated reproduction number for the malaria-only model (3) given in (8) and 𝑅0𝑙 the associated reproduction
number for the leptospirosis-only model (22) given in (25). Thus, the following result is established from Theorem 2 in [67].

Theorem 7. The DFE, 𝜖∗0𝑚𝑙, of the malaria-leptospirosis model (3) is locally asymptotically stable if 𝑅0𝑚𝑙 < 1 and unstable if 𝑅0𝑚𝑙 > 1.

Biologically, the implication of Theorem 7 is that both malaria and leptospirosis infections will die out from the population over
ime if 𝑅0𝑚𝑙 < 1 and if the initial conditions of the sub-classes of the model (3) are within the basin of attraction of 𝜖∗0𝑚𝑙. Therefore,

individuals infected with malaria and leptospirosis do not get additional infections in the infected population.
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Endemic equilibrium malaria-leptospirosis model
The co-existence endemic equilibrium of the full- model (3) is denoted by
𝜖∗𝑚𝑙 =

(

𝑆∗
ℎ , 𝐸∗

𝑚, 𝐼∗𝑚, 𝐸∗
𝑙 , 𝐼∗𝑙 , 𝐼∗𝑚𝑙 , 𝑅∗

𝑚, 𝑅∗
𝑙 , 𝑅∗

𝑚𝑙 , 𝑆∗
𝑞 , 𝐼∗𝑞 , 𝑆∗

𝑟 , 𝐼∗𝑟 , 𝐵∗). The explicit expression for components of 𝜖∗𝑚𝑙 in terms of model
parameters is not considered analytically due strong complexity of model equations. However, the model (3) has the following
boundary endemic equilibria if 𝑅0𝑚𝑙 = max{𝑅0𝑚, 𝑅0𝑙} > 1;

(i) 𝜖∗𝑚𝑙1 =
(

𝑆∗
ℎ1, 𝐸∗

𝑚, 𝐼∗𝑚, 0, 0, 0, 𝑅∗
𝑚, 0, 0, 𝑆∗

𝑞 , 𝐼∗𝑞 , 0, 0, 0
)

is leptospirosis free state, where expression for 𝑆∗
ℎ1, 𝐸∗

𝑚, 𝐼∗𝑚, 𝑅∗
𝑚, 𝑆∗

𝑞 and 𝐼∗𝑞 are
given in (15)–(17) and thus, the analysis of 𝜖∗𝑚𝑙1 is similar to 𝜖∗1𝑚 of the model (4) described in Section ‘‘Malaria-only model’’.

(ii) 𝜖∗𝑚𝑙2 =
(

𝑆∗
ℎ2, 0, 0, 𝐸∗

𝑙 , 𝐼∗𝑙 , 0, 0, 𝑅∗
𝑙 , 0, 0, 0, 𝑆∗

𝑟 , 𝐼∗𝑟 , 𝐵∗) is malaria free state, where 𝑆∗
ℎ2, 𝐸∗

𝑙 , 𝐼∗𝑙 , 𝑅∗
𝑙 , 𝑆∗

𝑟 , 𝐼∗𝑟 and 𝐵∗ are given in 𝜖∗1𝑙 of
the model (22) in Section ‘‘Leptospirosis-only model’’ and its analysis is similar to 𝜖∗1𝑙. The steady states of both sub-models
are locally and globally asymptotically stable, so the full model cannot undergo backward bifurcation, as the dynamics of the
malaria-leptospirosis model are determined by those of its sub-models [50,79]. As a result, both equilibria of the model system
(3) exist, and are unique, locally, and globally asymptotically stable [77,78]. Furthermore, in Section a, we demonstrate the
numerical analysis of the existence and stability of DFE and the endemic equilibria of the full model.

Numerical simulations

In this section, simulations of the co-infection model (3) are performed to support the theoretical results of the model. This is
accomplished in MATLAB using the 𝑜𝑑 𝑒45 algorithm. The model parameters used for simulations are given in Table 1, and the initial
conditions are set as:

(

𝑆ℎ(0), 𝐸𝑚(0), 𝐼𝑚(0), 𝐸𝑙(0), 𝐼𝑙(0), 𝐼𝑚𝑙(0), 𝑅𝑚(0), 𝑅𝑙(0), 𝑅𝑚𝑙(0), 𝑆𝑞(0), 𝐼𝑞(0), 𝑆𝑟(0), 𝐼𝑟(0), 𝐵(0)
)

=

(490, 60, 20, 30, 20, 10, 10, 10, 5, 1000, 200, 600, 50, 300);
(43)

the basic reproduction number is obtained as
𝑅0𝑚𝑙 = max{𝑅0𝑚, 𝑅0𝑙} ≈ 2.8561 > 1, where, 𝑅0𝑙 ≈ 2.8561 and 𝑅0𝑚 ≈ 1.7229.

Stability analysis of DFE and endemic equilibria of the full-model

The plots in Figs. 2(𝑎)–2(𝑗) indicate that every solution of the malaria-leptospirosis co-infection model (3) converges to the unique
ndemic equilibrium, 𝜖∗𝑚𝑙, in the long run regarding the initial sizes of the sub-classes when 𝑅0𝑚𝑙 > 1. Thus, all infected sub-classes

endure in the population. Epidemiologically, this shows that the malaria-leptospirosis co-infection will persist in the population.
On the other hand, in Figs. 3(𝑎)–3(𝑔), we observed that every solution trajectory of the malaria-leptospirosis co-infection model
3) converges to 𝜖∗0𝑚𝑙 in the long run when 𝑅0𝑚𝑙 = max{0.7964, 0.9523} = 0.9523 < 1 with 𝛽ℎ𝑟 = 0.000315, 𝛽ℎ𝑒 = 0.0003, 𝛽𝑟 =
0.000002, 𝛽ℎ𝑚 = 0.0034, 𝛽𝑞 = 0.0034, 𝛽0 = 0.8, 𝛾𝑙 = 0.0035, 𝛾𝑚 = 0.00024, 𝜇𝑞 = 1

14 , 𝜇𝑟 = 0.02, 𝜖1 = 8.5 and 𝜇𝑏 = 0.07 and the other
parameter values are used in Table 1. In Figs. 3(𝑎)–3(𝑑) and 3(𝑔), all solution trajectories of (3) except trajectories of 𝑆ℎ, 𝑆𝑞 and
𝑆𝑟 converge to zero regardless of the initial population sizes, as 𝑡 → ∞. whereas (𝑆ℎ, 𝑆𝑞 , 𝑆𝑟) → (𝛬𝜇 ,

𝛬𝑞
𝜇𝑞

, 𝛬𝑟
𝜇𝑟
), as 𝑡 → ∞ as shown in

Fig. 3(𝑓 ). In biological terminology, it recommends that the malaria-leptospirosis co-infection will be eradicated from the population
hrough time if 𝑅0𝑚𝑙 = max{𝑅0𝑚, 𝑅0𝑙} < 1 (if both 𝑅0𝑚 and 𝑅0𝑙 are less than unity).

Impact of 𝛽0, 𝛽ℎ𝑚, 𝜇𝑞 on 𝑅0𝑚

In Section ‘‘Sensitivity analysis of the malaria-only model’’, we discussed the sensitivity of the parameters of 𝑅0𝑚 as well as the
impacts of the most influencing parameters (directly or indirectly influence) on the magnitude of 𝑅0𝑚. In this section, we explore
the impacts of the most sensitive parameters, 𝛽0, 𝛽ℎ𝑚 and 𝜇𝑞 on the value of 𝑅0𝑚. The graphical results are depicted in Figs. 4 and
6. In Figs. 4, 6(𝑎) and 6(𝑏), it can be observed that 𝑅0𝑚 increases dramatically as 𝛽0 and 𝛽ℎ𝑚 increase. In Fig. 6(𝑎), we noticed that
𝑅0𝑚 < 1 when 𝛽0 < 0.58. Moreover, 𝑅0𝑚 < 1 when 𝛽ℎ𝑚 < 0.0015 as shown in Fig. 6(𝑏). This shows that reducing these parameter
values, as indicated by the results, will sufficiently diminish the spread of malaria infection and co-infection in the community. In
contrast, 𝑅0𝑚 decreases steadily as 𝜇𝑞 increases, and 𝑅0𝑚 < 1 when 𝜇𝑞 > 1

8.33 as confirmed in Fig. 6(𝑐). This means that reducing
the mosquito population plays a significant role in diminishing the number of malaria-infected individuals as well as the number
of malaria-leptospirosis co-infected individuals.

Impact of 𝛽ℎ𝑒, 𝜇𝑏, 𝜖1 on 𝑅0𝑙

In this section, we demonstrate the impact of the most sensitive parameters 𝛽ℎ𝑒, 𝜇𝑏 and 𝜖1 on 𝑅0𝑙 graphically. In Figs. 5, 7(𝑎)
nd 7(𝑏), it can be seen that 𝑅0𝑙 increases as 𝛽ℎ𝑒, and 𝜖1 increase. On the other hand, 𝑅0𝑙 decreases steadily as 𝜇𝑏 increases, as
onfirmed in Fig. 7(𝑐). Furthermore, the value of 𝑅0𝑙 < 1 when the value of 𝛽ℎ𝑒 < 0.00016, 𝜖1 > 3.1, or when 𝜇𝑏 > 0.14, as shown in

Figs. 7(𝑎)–7(𝑐). In biological terms, leptospirosis infection and co-infection can be eliminated from the infected population if these
arameter values are less than their specified values as indicated by results.
14 
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Fig. 2. Simulations of the model (3) showing convergence of solutions with different initial sizes of the sub-populations to the endemic equilibrium over time.
The parameter values given in Table 1 are used (so that, 𝑅0𝑚𝑙 ≈ 2.8561 > 1).
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Fig. 3. Simulations of the model (3) showing convergence of solutions with different initial values to the DFE, 𝜖∗0𝑚𝑙 over time. The parameter values given in
Table 1 are used except 𝛽ℎ𝑟 = 0.000315, 𝛽ℎ𝑒 = 0.0003, 𝛽𝑟 = 0.000002, 𝛽ℎ𝑚 = 0.0034, 𝛽𝑞 = 0.0034, 𝛽0 = 0.8, 𝛾𝑙 = 0.0035, 𝛾𝑚 = 0.00024, 𝜇𝑞 = 1

14
, 𝜇𝑟 = 0.02, 𝜖1 = 8.5 and

𝜇𝑏 = 0.07 (so that, 𝑅0𝑚𝑙 = max{0.7964, 0.9523} = 0.9523 < 1).
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Fig. 4. Impacts of 𝛽ℎ𝑚 and 𝛽0 on 𝑅0𝑚, for 0.002 ≤ 𝛽ℎ𝑚 ≤ 0.008, 0.5 ≤ 𝛽0 ≤ 1.4. All other parameters are the same as those given in Table 1.

Fig. 5. Impacts of 𝛽ℎ𝑒 and 𝜖1 on 𝑅0𝑙 , for 0.0001 ≤ 𝛽ℎ𝑒 ≤ 0.0008, 2 ≤ 𝜖1 ≤ 11. All other parameters are the same as those given in Table 1.

Impact of 𝛽0 on 𝐼𝑚, 𝐼𝑚𝑙 and 𝐼𝑞

In this section, the impact of 𝛽0 on populations of infectious humans with malaria, co-infected humans, and infected mosquitoes
are demonstrated in Figs. 8(𝑎), 8(𝑏) and 8(𝑐), respectively. It is observed that a decrease in the values of 𝛽0 will decrease the number of
malaria-infected humans, the number of co-infected humans, and the number of infected mosquitoes steadily as shown in Figs. 8(𝑎) –
8(𝑐). In other words, the values of 𝛽0 directly influence the number of infected humans and mosquitoes in these classes. This indicates
that a control strategy of mosquito biting rate will sufficiently diminish the spread of malaria and malaria-leptospirosis co-infected
in the community. Moreover, reducing the biting rate of mosquitoes reduces the transmission rate among humans and infected
mosquitoes as well as the force of infection of humans due to infected mosquitoes. This suggests that preventive interventions,
such as insecticide-treated bed nets or indoor spraying, should be provided to prevent mosquito bites, which in turn reduce the
transmission of malaria in the community.
17 
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Fig. 6. Plots showing impact the most influencing parameters on 𝑅0𝑚. The parameter values given in Table 1 are used.

Fig. 7. Plots showing the impact of the most influencing parameters on 𝑅0𝑙 . The parameter values given in Table 1 are used.

Fig. 8. Simulations of the model system (3) showing the varying effect of 𝛽0 on the classes of; (a) infectious humans with Malaria 𝐼𝑚, (b) co-infected humans
𝑚𝑙 and (c) infected mosquitoes 𝐼𝑞 .

Impact of 𝛽ℎ𝑚 on 𝑆ℎ, 𝐼𝑚 and 𝐼𝑚𝑙

In Fig. 9(𝑎), it can be observed that decreasing 𝛽ℎ𝑚 increases the size of the susceptible individuals steadily. Thus, the number
of susceptible humans getting infected in the population decreases with time. In contrast, decreasing 𝛽ℎ𝑚 decreases the number of
malaria-infected individuals and the number of co-infected individuals in the population as shown in Figs. 9(𝑏) and 9(𝑐), respectively.

his means that the malaria-infected and malaria-leptospirosis co-infected individuals can be reduced by minimizing the transmission
18 
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Fig. 9. Simulations of the model system (3) showing the varying effect of 𝛽ℎ𝑚 on the classes of; (a) susceptible humans 𝑆ℎ, (b) infectious humans with Malaria
𝐼𝑚 and (c) co-infected humans 𝐼𝑚𝑙 .

Fig. 10. Simulations of the model system (3) showing the varying effect of 𝜇𝑞 on population of infected mosquitoes (𝐼𝑞).

rate of humans due to infected mosquitoes. Consequently, a preventive strategy that reduces the biting of mosquitoes will sufficiently
iminish the number of individuals getting infected with malaria as well as malaria-leptospirosis co-infected in the population.

Impact of 𝜇𝑞 on 𝐼𝑞

In this section, the model system (3) is simulated to demonstrate the impact of the mortality rate of mosquitoes 𝜇𝑞 on the infected
osquito population. It is observed in Fig. 10 that infected mosquito population decreases as 𝜇𝑞 increases in values. This means that
 control strategy that increases the natural mortality rate of mosquitoes will effectively reduce the spread of malaria- infection.

Consequently, mosquito removal strategies, like insecticide spraying, should be implemented to reduce the population of infected
osquitoes, which in turn minimizes the rate at which malaria spreads from infected mosquitoes.

Impact of 𝜖1 and 𝜇𝑏 on Leptospira population

In Figs. 11(𝑎) and 11(𝑏), it is observed that the population of the pathogen in the environment decreases steadily with time
as both 𝜖1 and 𝜇𝑏 decrease in values. Thus, reduction of the load of leptospira in the environment can be achieved by improving
the sanitation rate of the environment or maintaining clean surroundings, which in turn reduces the transmission rate of humans
due to the e contaminated environment (𝛽ℎ𝑒). Consequently, the number of infectious individuals with leptospirosis and co-infected
individuals in the population diminishes.

Based on the numerical results shown in Figs. 6–11, we noticed that controlling human transmission rates (𝛽ℎ𝑚&𝛽ℎ𝑒) and
nhancing removal rates of mosquitoes and bacterial populations can effectively decrease the spread of both diseases and their co-
nfections. This suggests that interventions targeting bacterial population reduction or mosquito biting rate control will sufficiently
itigate the spread of malaria-leptospirosis co-infection in the population. In other words, reducing the spread of mono-infections
19 
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Fig. 11. Simulations of the model system (3) showing the varying effects of 𝜖1 and 𝜇𝑏 on 𝐵; (a) 𝐵 vs 𝜖1 and (b) 𝐵 vs 𝜇𝑏.

and malaria-leptospirosis co-infections depends on decreasing the mosquito population and improving the sanitation rate of the
nvironment. The effectiveness and cost-effectiveness of the suggested control measures are presented in Section a.

Optimal control analysis of the malaria-leptospirosis model

Based on the sensitivity analysis results, control measures for the parameters 𝛽0, 𝛽ℎ𝑚, 𝛽ℎ𝑒, and 𝜖1 will help to sufficiently diminish
he spread of malaria, leptospirosis, and malaria-leptospirosis co-infection in the population. Additionally, interventions increasing
he values of 𝜇𝑞 and 𝜇𝑏 will effectively combat the spread of both diseases as well as their co-infection. In this section, we explore

the autonomous malaria-leptospirosis model (3) by integrating the time-dependent controls to identify effective and cost-effective
control strategies for eradicating malaria-leptospirosis co-infections. We incorporate controls 𝜔1(𝑡), 𝜔2(𝑡), 𝜔3(𝑡) and 𝜔4(𝑡) into (3) at
a specified time t with 𝑡 ∈ [0, 𝑇 ] (T is the final time and its value is fixed), where 𝜔1(𝑡): represents malaria prevention through
the use of insecticide-treated bed nets and mosquito repellent lotion for skin) to prevent mosquito bites which in turn minimize
he transmission of malaria within a community. 𝜔2(𝑡): denotes leptospirosis prevention by using treated water for consumption

and personal protective equipment like rubber boots, waterproof overalls, goggles, and gloves to diminish leptospirosis infections.
𝜔3(𝑡): represents insecticide control measures for malaria such as spraying and fogging to reduce the mosquito population, we
ssumed that a proportional number of mosquitoes in each class of the mosquito population is removed with the constant control
ate of insecticide. 𝜔4(𝑡): represents the control sanitation rate of the environment; improvements in slum areas by eliminating
rash, improving drainage, and environmental modifications (maintaining clean surroundings) to curb the growth of the Leptospira
athogen, and the control system is given as follows:

𝑆′
ℎ(𝑡) = 𝛬 + 𝜁 𝛾𝑚𝐼𝑚 + 𝜌𝑚𝑅𝑚 + 𝜌𝑙𝑅𝑙 + 𝜌𝑚𝑙𝑅𝑚𝑙 −

[(

1 − 𝜔1
)

𝜆𝑚 +
(

1 − 𝜔2
)

𝜆𝑙 + 𝜇
]

𝑆ℎ,

𝐸′
𝑚(𝑡) =

(

1 − 𝜔1
)

𝜆𝑚𝑆ℎ − (𝛼𝑚 + 𝜇)𝐸𝑚,

𝐸′
𝑙 (𝑡) =

(

1 − 𝜔2
)

𝜆𝑙𝑆ℎ − (𝛼𝑙 + 𝜇)𝐸𝑙 ,

𝐼 ′𝑚(𝑡) = 𝛼𝑚𝐸𝑚 + 𝜉1𝜃 𝐼𝑚𝑙 − (𝛾𝑚 + 𝛿𝑚 + 𝜇 + 𝜏1
(

1 − 𝜔2
)

𝜆𝑙)𝐼𝑚,

𝐼 ′𝑙 (𝑡)𝑑 𝑡 = 𝛼𝑙𝐸𝑙 + 𝜉2𝜃 𝐼𝑚𝑙 − (𝛾𝑙 + 𝛿𝑙 + 𝜇 + 𝜏2
(

1 − 𝜔1
)

𝜆𝑚)𝐼𝑙 ,

𝐼 ′𝑚𝑙(𝑡) = 𝜏1
(

1 − 𝜔2
)

𝜆𝑙𝐼𝑚 + 𝜏2
(

1 − 𝜔1
)

𝜆𝑚𝐼𝑙 −
(

𝜃 + 𝜇
)

𝐼𝑚𝑙 ,

𝑅′
𝑚(𝑡) = (1 − 𝜁 )𝛾𝑚𝐼𝑚 − (𝜌𝑚 + 𝜇)𝑅𝑚,

𝑅′
𝑙(𝑡) = 𝛾𝑙𝐼𝑙 − (𝜌𝑙 + 𝜇)𝑅𝑙 ,

𝑅′
𝑚𝑙(𝑡) = (1 − (𝜉1 + 𝜉2))𝜃 𝐼𝑚𝑙 − (𝜌𝑚𝑙 + 𝜇)𝑅𝑚𝑙 ,

𝑆′
𝑞(𝑡) =

(

1 − 𝜔3
)

𝛬𝑞 −
(

(

1 − 𝜔1
)
𝛽𝑞𝛽0(𝐼𝑚 + 𝐼𝑚𝑙)

𝑁ℎ
+ 𝜇𝑞 + 𝜚1𝜔3

)

𝑆𝑞 ,

𝐼 ′𝑞(𝑡) =
(

1 − 𝜔1
)
𝛽𝑞𝛽0(𝐼𝑚 + 𝐼𝑚𝑙)

𝑁ℎ
𝑆𝑞 − (𝜇𝑞 + 𝜚1𝜔3)𝐼𝑞 ,

𝑆′
𝑟(𝑡) = 𝛬𝑟 −

( 𝛽𝑟𝐵
𝜅 + 𝐵

+ 𝜇𝑟
)

𝑆𝑟,

𝐼 ′𝑟 (𝑡) =
𝛽𝑟𝐵
𝜅 + 𝐵

𝑆𝑟 − 𝜇𝑟𝐼𝑟,

𝐵′(𝑡) = (

1 − 𝜔
)

𝜖 𝐼 +
(

1 − 𝜔
)

𝜖 𝐼 + 𝜖 𝐼 − (𝜇 + 𝜚 𝜔 )𝐵 ,

(44)
2 1 𝑙 2 2 𝑚𝑙 3 𝑟 𝑏 2 4
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where, 𝜆𝑚 = 𝛽ℎ𝑚𝛽0𝐼𝑞
𝑁ℎ

, 𝜆𝑙 = 𝛽ℎ𝑒𝐵
𝜅+𝐵 +𝛽ℎ𝑟𝐼𝑟, subject to the initial conditions: 𝑆ℎ(0) ≥ 0, 𝐸𝑚(0) ≥ 0, 𝐸𝑙(0) ≥ 0, 𝐼𝑚(0) ≥ 0, 𝐼𝑙(0) ≥ 0, 𝐼𝑚𝑙(0) ≥

, 𝑅𝑚(0) ≥ 0, 𝑅𝑙(0) ≥ 0, 𝑅𝑚𝑙(0) ≥ 0, 𝑆𝑞(0) ≥ 0, 𝐼𝑞(0) ≥ 0, 𝑆𝑟(0) ≥ 0, 𝐼𝑟(0) ≥ 0, 𝐵(0) ≥ 0, the coefficients 𝜚1 and 𝜚2, respectively, are
he control rates of 𝜔3 and 𝜔4. This work aims to reduce the number of infectious humans (malaria, leptospirosis, and co-infections),
he total mosquito population, and the bacterial population, while minimizing the associated costs of controls over a specific time
rame. Therefore, the objective functional form, 𝑂, to be minimized is given as follows:

𝑂
(

𝜔1, 𝜔2, 𝜔3, 𝜔4
)

= ∫

𝑇𝑓

0

(

𝑦1(𝐼𝑚 + 𝐼𝑙 + 𝐼𝑚𝑙) + 𝑦2(𝑆𝑞 + 𝐼𝑞) + 𝑦3𝐵 + 1
2

4
∑

𝑘=1
𝑍𝑘𝜔

2
𝑘

)

𝑑 𝑡 (45)

subject to the system (44), where 𝑇𝑓 is the final time for optimal control implementation and a fixed value, the coefficients 𝑦1, 𝑦2 and
𝑦3 are positive weight constants for the infectious human population (𝐼𝑚, 𝐼𝑙 and 𝐼𝑚𝑙), total mosquito population, and the bacterial
population, respectively. The terms 𝑦1(𝐼𝑚+𝐼𝑙+𝐼𝑚𝑙), 𝑦2(𝑆𝑞+𝐼𝑞) and 𝑦3𝐵 in the integrand 𝑂 indicate the benefits of infectious humans
(𝐼𝑚, 𝐼𝑙 , 𝐼𝑚𝑙), 𝑁𝑞 , and 𝐵. For example, selecting a high value of 𝑦1 signifies that reducing the total number of infectious humans is
more important than reducing the populations of mosquitoes and bacteria [80]. Additionally, 𝑧1, 𝑧2, 𝑧3 and 𝑧4 are positive weight
constants for control functions 𝜔1, 𝜔2, 𝜔3 and 𝜔4, respectively. The terms 𝑧1

2 𝜔
2
1,

𝑧2
2 𝜔

2
2,

𝑧3
2 𝜔

2
3 and 𝑧4

2 𝜔
2
4 represent the cost functions

associated with the malaria prevention control, leptospirosis prevention control, insecticide control for malaria and the control
sanitation rate of the environment respectively. Unlike some previous works (e.g., [81–83]), we considered a linear function for the
cost of infections, 𝐼𝑚, 𝐼𝑙 , 𝐼𝑚𝑙 , 𝑁𝑞 , 𝐵, and a quadratic form to represent the nonlinear costs associated with control interventions. This
s consistent with the authors of various optimal control studies (see [84–87]). Justifications for selecting these cost functions are

detailed in the previous studies (please refer, [88,89] and the references therein).
Our goal is to find an optimal control, 𝜔∗ = (𝜔∗

1 , 𝜔∗
2 , 𝜔∗

3 , 𝜔∗
4), such that

𝑂(𝜔∗
1 , 𝜔∗

2 , 𝜔∗
3 , 𝜔∗

4) = inf {𝑂(𝜔1, 𝜔2, 𝜔3, 𝜔4) ∶ 𝜔1, 𝜔2, 𝜔3, 𝜔4 ∈ 𝛩}, (46)

where, 𝛩 = {(𝜔1(𝑡), 𝜔2(𝑡), 𝜔3(𝑡), 𝜔4(𝑡)
)

∶ 0 ≤ 𝜔𝑘(𝑡) ≤ 1, 𝑡 ∈ [0, 𝑇𝑓 ]} is a non-empty control set and each 𝜔𝑘(𝑡) is Lebesgue measurable,
𝑘 = 1, 2, 3, 4.

A Hamiltonian H, of the optimal control problem, based on PMP [90] is formulated as follows:

𝐻 =𝑦1(𝐼𝑚 + 𝐼𝑙 + 𝐼𝑚𝑙) + 𝑦2(𝑆𝑞 + 𝐼𝑞) + 𝑦3𝐵 + 1
2

4
∑

𝑘=1
𝑍𝑘𝜔

2
𝑘

+ 𝜒1𝑆
′
ℎ(𝑡) + 𝜒2𝐸

′
𝑚(𝑡) + 𝜒3𝐸

′
𝑙 (𝑡) + 𝜒4𝐼

′
𝑚(𝑡) + 𝜒5𝐼

′
𝑙 (𝑡) + 𝜒6𝐼

′
𝑚𝑙(𝑡) + 𝜒7𝑅

′
𝑚(𝑡) + 𝜒8𝑅

′
𝑙(𝑡)

+ 𝜒9𝑅
′
𝑚𝑙(𝑡) + 𝜒10𝑆

′
𝑞(𝑡) + 𝜒11𝐼

′
𝑞(𝑡) + 𝜒12𝑆

′
𝑟(𝑡) + 𝜒13𝐼

′
𝑟 (𝑡) + 𝜒14𝐵

′(𝑡),

(47)

where, 𝜒𝑘 (𝑘 = 1, 2,… , 14) are the adjoint variables corresponding to the state variables.

Existence of an optimal control

The following result is established for the existence of optimal controls that minimize the cost function 𝑂 (45).

Theorem 8. Suppose the objective function O (45) is defined on the control set 𝛩 subject to the optimal system (44), then there exists an
optimal control quadruple 𝜔∗ = (𝜔∗

1 , 𝜔∗
2 , 𝜔∗

3 , 𝜔∗
4) that holds (46), provided that the following conditions given in [91] hold.

(a) The admissible control set is closed and convex,
(b) The right-hand-side expression of the control system (44) is bounded by a linear function in the state and control variables,
(c) The Lagrangian of the optimal control in (45) is convex with respect to the controls,
(d) There exist 𝜉1, 𝜉2 > 0 and 𝜉3 > 1 such that the Lagrangian is bounded below by

𝜉1

( 4
∑

𝑘=1
∣ 𝜔𝑘 ∣

)

𝜉3
2
− 𝜉2.

The proof: obviously, the control set is closed and convex by definition. Since the state and control variables have control the
state system is bounded. Also, since the integrand in the equation is a finite linear combination of the state and control functions
the integrand is convex with respect to control variables.

Theorem 9. Suppose 𝑋 = (𝑆∗
ℎ , 𝐸∗

𝑚, 𝐼∗𝑚, 𝐸∗
𝑙 , 𝐼∗𝑙 , 𝐼∗𝑚𝑙 , 𝑅∗

𝑚, 𝑅∗
𝑙 , 𝑅∗

𝑚𝑙 , 𝑆∗
𝑞 , 𝐼∗𝑞 , 𝑆∗

𝑟 , 𝐼∗𝑟 , 𝐵∗) is an optimal state of the state (44) and 𝜔∗ =
(𝜔∗, 𝜔∗, 𝜔∗, 𝜔∗) is an optimal control that holds (46), then there exist adjoint variables;
1 2 3 4
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𝜒1, 𝜒2, 𝜒3, 𝜒4, 𝜒5, 𝜒6, 𝜒7, 𝜒8, 𝜒9, 𝜒10, 𝜒11, 𝜒12, 𝜒13, 𝜒14 satisfying adjoint system
𝜒 ′
1(𝑡) = (𝜒1 − 𝜒2)(1 − 𝜔1)𝜆𝑚 + (𝜒1 − 𝜒3)(1 − 𝜔2)𝜆𝑙 + 𝜒1𝜇 ,

𝜒 ′
2(𝑡) = (𝜒2 − 𝜒4)𝛼𝑚 + 𝜒2𝜇 ,

𝜒 ′
3(𝑡) = (𝜒3 − 𝜒5)𝛼𝑙 + 𝜒3𝜇 ,

𝜒 ′
4(𝑡) = 𝜒4(𝛾𝑚 + 𝜇) + (𝜒4 − 𝜒6)𝜏1

(

1 − 𝜔2
)

𝜆𝑙 + (𝜒10 − 𝜒11)
(

1 − 𝜔1
)
𝛽𝑞𝛽0(𝑁ℎ − 𝐼𝑚)𝑆𝑞

(𝑁ℎ)2
−
(

𝜒1𝜁 𝛾𝑚 + 𝜒7(1 − 𝜁 )𝛾𝑚 + 𝑦1
)

,

𝜒 ′
5(𝑡) = 𝜒5(𝛾𝑙 + 𝜇) + (𝜒5 − 𝜒6)𝜏2

(

1 − 𝜔1
)

𝜆𝑚 −
(

𝜒8𝛾𝑙 + 𝜒14𝜖1
(

1 − 𝜔2
)

+ 𝑦1
)

,

𝜒 ′
6(𝑡) = 𝜒6(𝜃 + 𝜇) + (𝜒10 − 𝜒11)

(

1 − 𝜔1
)
𝛽𝑞𝛽0(𝑁ℎ − 𝐼𝑚𝑙)𝑆𝑞

(𝑁ℎ)2
−
(

𝜒4𝜉1𝜃 + 𝜒5𝜉2𝜃 + 𝜒9𝜉3𝜃 + 𝜒14𝜖2
(

1 − 𝜔2
)

+ 𝑦1
)

,

𝜒 ′
7(𝑡) = (𝜒7 − 𝜒1)𝜌𝑚 + 𝜒7𝜇 ,

𝜒 ′
8(𝑡) = (𝜒8 − 𝜒1)𝜌𝑙 + 𝜒8𝜇 ,

𝜒 ′
9(𝑡) = (𝜒9 − 𝜒1)𝜌𝑚𝑙 + 𝜒9𝜇 ,

𝜒 ′
10(𝑡) = 𝜒10(𝜇𝑞 + 𝜚1𝜔3) + (𝜒10 − 𝜒11)(1 − 𝜔1)

𝛽𝑞𝛽0(𝐼𝑚 + 𝐼𝑚𝑙)
𝑁ℎ

− 𝑦2,

𝜒 ′
11(𝑡) = 𝜒11(𝜇𝑞 + 𝜚1𝜔3) + (𝜒1 − 𝜒2)(1 − 𝜔1)

𝛽ℎ𝑚𝛽0𝑆ℎ
𝑁ℎ

+ (𝜒5 − 𝜒6)𝜏2(1 − 𝜔1)
𝛽ℎ𝑚𝛽0𝐼𝑙
𝑁ℎ

− 𝑦2,

𝜒 ′
12(𝑡) = 𝜒12𝜇𝑟 + (𝜒12 − 𝜒13)

𝛽𝑟𝐵
𝜅 + 𝐵

,

𝜒 ′
13(𝑡) = (𝜒1 − 𝜒3)(1 − 𝜔2)𝛽ℎ𝑟𝑆ℎ + (𝜒4 − 𝜒6)𝜏1(1 − 𝜔2)𝛽ℎ𝑟𝐼𝑚 + 𝜒13𝜇𝑟 − 𝜒14𝜖3,

𝜒 ′
14(𝑡) = (𝜒1 − 𝜒3)(1 − 𝜔2)

𝜅 𝛽ℎ𝑒𝑆ℎ

(𝜅 + 𝐵)2
+ (𝜒4 − 𝜒6)𝜏1(1 − 𝜔2)

𝜅 𝛽ℎ𝑒𝐼𝑚
(𝜅 + 𝐵)2

+ (𝜒12 − 𝜒13)
𝜅 𝛽𝑟𝑆𝑟

(𝜅 + 𝐵)2
+ 𝜒14(𝜇𝑏 + 𝜚2𝜔4) − 𝑦3,

(48)

and with final time conditions,
𝜒𝑘(𝑇𝑓 ) = 0, 𝑘 = 1, 2, 3,… , 14. (49)

Furthermore, the controls 𝜔∗
𝑖 , 𝑖 = 1, 2, 3, 4, 5 that minimizes 𝑂 over 𝛩 are given by

𝜔∗
1 = max

{

0,min
{ (𝜒2 − 𝜒1)𝜆𝑚𝑆ℎ + (𝜒6 − 𝜒5)𝜏2𝜆𝑚𝐼𝑙

𝑍1
, 1
}

}

, 𝜔∗
3 = max

{

0,min
{𝜒10(𝛬𝑞 + 𝜚1𝑆𝑞) + 𝜒11𝜚1𝐼𝑞

𝑍3
, 1
}

}

,

𝜔∗
2 = max

{

0,min
{ (𝜒3 − 𝜒1)𝜆𝑙𝑆ℎ + (𝜒6 − 𝜒4)𝜏1𝜆𝑙𝐼𝑚

𝑍2
, 1
}

}

, 𝜔∗
4 = max

{

0,min
{𝜒14𝜚2𝐵

𝑍4
, 1
}

}

,
(50)

Proof. Let 𝑋∗ = (𝑆∗
ℎ , 𝐸∗

𝑚, 𝐼∗𝑚, 𝐸∗
𝑙 , 𝐼∗𝑙 , 𝐼∗𝑚𝑙 , 𝑅∗

𝑚, 𝑅∗
𝑙 , 𝑅∗

𝑚𝑙 , 𝑆∗
𝑞 , 𝐼∗𝑞 , 𝑆∗

𝑟 , 𝐼∗𝑟 , 𝐵∗) and 𝜔∗ = (𝜔∗
1 , 𝜔∗

2 , 𝜔∗
3 , 𝜔∗

4) be the optimal solutions of the
optimal control problem. We apply the standard results given in PMP [92] to derive the adjoint state and the optimal control.
Thus, taking negatives of partial derivatives of the Hamiltonian from (47) with respect to the associated state variables, yields the
adjoint Eqs. (48):

𝜕 𝐻
𝜕 𝑆ℎ

= −𝜒 ′
1(𝑡),

𝜕 𝐻
𝜕 𝐸𝑚

= −𝜒 ′
2(𝑡),

𝜕 𝐻
𝜕 𝐸𝑙

= −𝜒 ′
3(𝑡),

𝜕 𝐻
𝜕 𝐼𝑚

= −𝜒 ′
4(𝑡),

𝜕 𝐻
𝜕 𝐼𝑙

= −𝜒 ′
5(𝑡),

𝜕 𝐻
𝜕 𝐼𝑚𝑙

= −𝜒 ′
6(𝑡),

𝜕 𝐻
𝜕 𝑅𝑚

= −𝜒 ′
7(𝑡),

𝜕 𝐻
𝜕 𝑅𝑙

= −𝜒 ′
8(𝑡),

𝜕 𝐻
𝜕 𝑅𝑚𝑙

= −𝜒 ′
9(𝑡),

𝜕 𝐻
𝜕 𝑆𝑞

= −𝜒 ′
10(𝑡),

𝜕 𝐻
𝜕 𝐼𝑞

= −𝜒 ′
11(𝑡),

𝜕 𝐻
𝜕 𝑆𝑟

= −𝜒 ′
12(𝑡),

𝜕 𝐻
𝜕 𝐼𝑟

= −𝜒 ′
13(𝑡),

𝜕 𝐻
𝜕 𝐵 = −𝜒 ′

14(𝑡),

(51)

and with transversality conditions, 𝜒𝑘(𝑇 ) = 0, 𝑘 = 1, 2,… , 14. Lastly, to derive optimal controls in the interior of the control set 𝛩,
we use an optimal condition, which is given by

𝜕 𝐻
𝜕 𝜔𝑘

= 0, for 𝜔∗
𝑘(where 𝑘 = 1, 2, 3, 4). (52)

Solving Eq. (52) for each optimal control gives the relation which is the same as stated in (50).

Numerical simulations and cost-effectiveness analysis of optimal control problem

In this section, we use the Forward-Backward Sweep method in the MATLAB program (details in [93]) to carry out the
umerical analysis of the malaria-leptospirosis co-infection model with and without optimal controls. The aim is to demonstrate

the effectiveness of various control strategies in reducing the spread of both diseases. The parameter values used in numerical
imulations are given in Table 3. The initial conditions of the state variables are specified in (43). The simulation period in this
umerical experiment is [0, 400] in units of days. The weight constant values for human, mosquito and bacterial populations are

chosen as 𝑦1 = 1, 𝑦2 = 1, 𝑦3 = 0.1 respectively, while the weight constants for controls are 𝑍1 = 10, 𝑍2 = 10, 𝑍3 = 10, 𝑍4 = 15. The
insecticide rate in the mosquitoes population and the control rate of treatments in infectious humans are set as 𝜚 = 0.5 [42] and
1
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Fig. 12. Plots showing the effects of strategy A on dynamics of the malaria-leptospirosis co-infection model (44).

𝜚2 = 0.7 [61]. To assess the effectiveness of optimal control strategies, we compare the following four strategies which are selected
ased on their effectiveness.

Strategy 𝐴: Combination of 𝜔2 and 𝜔3,
Strategy 𝐵: Combination of 𝜔1, 𝜔2 and 𝜔3,
Strategy 𝐶: Combination of 𝜔2, 𝜔3 and 𝜔4,
Strategy 𝐷: Combination of all controls, 𝜔1, 𝜔2, 𝜔3 and 𝜔4.

Case I: Optimal use of the controls 𝜔2 and 𝜔3
In this case, we implement strategy A to illustrate its impact on populations of infectious humans, mosquitoes and bacteria. The

umerical results of this strategy are displayed in Figs. 12 (𝑎) – 12 (𝑑). Figs. 12(𝑎) and 12(𝑏) show a decrease in the populations of
infectious humans (𝐼𝑚, 𝐼𝑙 and 𝐼𝑚𝑙) and their total number compared to the scenario in the absence of the strategy. Similarly, this
strategy plays a crucial role in diminishing the total number of mosquitoes and bacterial populations as depicted in Figs. 12 (𝑐) and
12 (𝑑). Additionally, Fig. 12(𝑒) shows the control profile for this strategy, indicating that the optimal use of the control 𝜔2 remained
at its upper bound (100%) for 324 days before decreasing to the lower limit, while the optimal usage of 𝜔3 was consistently at its
maximum level throughout the simulation period.

Case II: Comparison of the optimal strategies 𝐵 and 𝐶
In this section, we compare the effectiveness of optimal strategies 𝐵 and 𝐶 in reducing the populations of infectious humans,

mosquitoes and bacteria. Their graphical results are demonstrated in Figs. 13 (𝑎) – 13 (𝑐). The figures illustrate that the total number
f infectious humans (𝐼𝑚+𝐼𝑙+𝐼 𝑚𝑙), mosquitoes, and bacteria decrease more rapidly compared to the results in the absence of optimal
ontrols. Both strategies effectively mitigate the total number of infectious individuals and mosquito populations. Meanwhile, in

Fig. 13 (𝑐), we observed that strategy 𝐶 exhibits a higher number of pathogen removal effects from the environment compared to
strategy 𝐵. In Fig. 13(𝑑), the control profiles of strategy 𝐵 suggest that the preventive efforts for malaria and leptospirosis should
be kept at their maximum value for the first 5.7 and 324 days, respectively, and then gradually reduced to zero for the rest of the
simulation time, while the insecticide control, 𝜔3, should be sustained at its upper bound throughout the entire simulation period.
Furthermore, the control profiles of strategy 𝐶 are depicted in Fig. 13(𝑒). As shown in Fig. 13(𝑒), the control 𝜔2 should be sustained
t the maximum effort 100% for 271 days before reducing to zero for the rest of the simulation period, whereas the control 𝜔
3
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Fig. 13. Plots showing the effects of strategies 𝐵 & 𝐶 on dynamics of the malaria-leptospirosis co-infection model (44).

should be maintained at 100% throughout the intervention period. Meanwhile, the control 𝜔4 is at the maximum level for 89 days,
decreases from 100% to 35.45% during the simulation period [89, 270], and then returns to 100% from [270, 295], sustained this
level thereafter.

Case III: Optimal use of the all controls
In this case, we implement strategy D, which combines all optimal controls 𝜔1, 𝜔2, 𝜔3 and 𝜔4 to demonstrate its impact on

populations of infected humans, mosquitoes, and bacteria. In Figs. 14(𝑎) – 14(𝑐), we noticed a significant reduction in the number of
infectious humans, total number of mosquitoes, and the size of the Leptospira pathogen when strategy D is implemented compared to
he results without it. The control profiles of this strategy are depicted in Fig. 14(𝑑). It is evident from Fig. 14(𝑑) that the controls 𝜔1
nd 𝜔2 maintain their maximum values for 5 and 269 days, respectively, before reducing to zero for the remainder of the simulation
eriod. The sanitation control rate of the environment 𝜔4 is at maximum effort for 88 days, declines from 100% to 34.88% during
he simulation period [88, 271], then rises back to 100% in the period [271, 296], sustained this level for the rest of simulation time.
eanwhile, the insecticide control, 𝜔3 remains at its upper value throughout the entire simulation period, as confirmed in Fig. 14(𝑑).

Case IV: Comparison of the optimal strategies 𝐴, 𝐶 and 𝐷
Based on the numerical results from case 1- case 3, we compare the effectiveness of the strategies 𝐴, 𝐶 and 𝐷 to determine the

most effective strategy in minimizing the objective function O. The graphical illustrations can be seen in Fig. 15. It is observed
rom Figs. 15(𝑎) – 15(𝑐) and the quantitative values in Table 5 that strategy 𝐷 is the most effective in minimizing the objective
unction 𝑂

(

𝜔1, 𝜔2, 𝜔3, 𝜔4
)

(45). Therefore, it is recommended that public health centers prioritize the implementation of strategy 𝐷,
hich incorporates four control measures to effectively manage and reduce the spread of mono-infections and malaria-leptospirosis

o-infection in the community. The efficiency analysis and cost-effectiveness of these optimal strategies will be discussed in the
ubsequent sections.

Efficiency analysis

Following the works of previous studies [83,89], we perform an efficiency analysis to compare the effects of different strategies
implemented in the last section using an efficiency index, denoted by 𝛯. We define variable 𝛥 as the area between the curve
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Fig. 14. Plots showing the effects of strategy 𝐷 on dynamics of the malaria-leptospirosis co-infection model (44).

representing the infectious human, 𝐼ℎ(𝐼𝑚, 𝐼𝑙 , 𝐼𝑚𝑙) population and the time over the interval [𝑇0 = 0, 𝑇𝑓 = 400], given by

𝛥 = ∫

400

0
𝐼ℎ(𝑡) 𝑑 𝑡, (53)

which measures the cumulative number of infectious humans during this period. The efficiency index, 𝛯, is obtained by

𝛯 =
(

1 −
𝛯𝑐
ℎ

𝛯 (0)
ℎ

)

× 100, (54)

where 𝛯𝑐
ℎ and 𝛯 (0) are, respectively, the accumulated number of infectious humans with and without control strategies. Thus, the

ost effective strategy will be the one with the highest efficiency index value [83,89]. The efficiency index for each of the strategies
−𝐷 is computed using the equations ((53), (54) and is given in the second column of Table 4.
Table 4 shows that strategy 𝐷 is the most effective in reducing the number of infectious individuals, followed by 𝐶 , 𝐴, and 𝐵,

consistent with the result obtained earlier.

Remark 1. It is important to note that 𝛥 in the second column of Table 4 represents the average accumulated number of infectious humans
uring the simulation period with and without control strategies and is calculated by averaging 𝛥 , 𝛥 and 𝛥 . The same method is applied
𝐼𝑚 𝐼𝑙 𝐼𝑚𝑙
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Fig. 15. Plots showing the impacts of the most effective strategies 𝐴, 𝐵 & 𝐷 on dynamics of the malaria-leptospirosis co-infection model (44).

Table 4
Table of efficiency index.

Strategy 𝛥 𝛯%

No controls 4 197 600 0
A 249 080 94.067
B 249 190 94.063
C 30 980 99.261
D 30 934 99.263

for 𝛯. Notably, the efficiency index values for each strategy are particularly strong, especially for strategies 𝐶 and 𝐷, as we have chosen
the four strategies based on their effectiveness among different possible strategies.

Cost-effectiveness analysis

In this section, we use the methods; average cost-effectiveness ratio (ACER) and the incremental cost-effectiveness ratio (ICER)
n the sense of [37,94,95], to identify the most cost-effective strategy in minimizing the objective function, 𝑂.

ACER of a particular intervention strategy is given by:

ACER =
Total cost produced by a intervention strategy

Total number of infections averted by the strategy , (55)

where, the total cost produced by a particular intervention strategy is estimated from

𝑇𝐶 = 1
2 ∫

𝑇𝑓

0

( 4
∑

𝑘=1
𝐵𝑘𝜔

2
𝑘

)

𝑑 𝑡 (56)

and, the total number of infections averted by the strategy is estimated as the difference between the total number of infected
ndividuals without optimal control and the total number of infected individuals with control.

The strategy with the smallest ACER value is the most cost-effective. The ACER value for the intervention strategies is calculated
and presented in the 4th column of Table 5. Strategy 𝐴 has the lowest ACER value, as indicated in Table 5. As a result, strategy
𝐴 is the most cost-effective, followed by strategies 𝐵 , 𝐶 , & 𝐷, respectively. While ICER involves comparing the difference between
the costs and health outcomes of any two alternative intervention strategies that are competing for the same limited resources
incrementally [96–98]. ICER value of two alternative strategies is given by:

ICER =
Change in total intervention Costs

Change in the total number of infections averted . (57)

To implement the ICER, control strategies are ranked by the total number of infections averted total number as shown in Table 5.
The strategy with the highest ICER value is discarded at each step. Additionally, Figs. 16, 17, and 18 show the total number of
infections averted, the total cost of each strategy, and the average cost-effectiveness ratio. We compare intervention strategies 𝐵
nd 𝐴 incrementally, by calculating ICER values for the two strategies as follows:

ICER(B) = 3777.9 − 0
3948584.6 − 0 = 0.0009568, ICER(A)= 3742.8 − 3777.9

3948696.6 − 3948584.5 = −0.3134. (58)

The qualitative results obtained in Eq. (58) indicate that strategy 𝐴 strongly dominates 𝐵, which implies that 𝐴 is less expensive
han 𝐵. As a result, strategy 𝐵 is removed from the list of alternative interventions, and then strategy 𝐶 is compared with strategy
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Table 5
Total infections averted, total cost, ACER.

Strategy Infection averted (×106) Total Cost ($) ACER

B 3.9485845 3777.9 0.0009568
A 3.9486966 3742.8 0.0009479
C 4.1667972 5630 0.00135116
D 4.1668426 5665.7 0.0013597

Fig. 16. Total number of infections averted for each strategy.

𝐴 as follows:

ICER(A) = 3742.8 − 0
3948696.6 − 0 = 0.0009479, ICER(C)= 5630 − 3742.8

4166797.2 − 3948696.6 = 0.008653. (59)

Based on the calculated values obtained in Eq. (59), ICER(C) is less than ICER(A). This shows that strategy 𝐶 is more costly than
Strategy 𝐴. Once again, strategy 𝐶 is discarded from the list of alternative interventions. Consequently, strategy 𝐴 is compared with
strategy 𝐷 incrementally.

ICER(A) = 3742.8 − 0
3948696.6 − 0 = 0.0009479, ICER(D)= 5665.7 − 3742.8

4166842.6 − 3948696.6 = 0.008815. (60)

From Eq. (60), it is evident that ICER(D) is greater than ICER(A). This suggests that strategy 𝐴 is less costly than strategy 𝐷. Thus,
e concluded that strategy 𝐴 is the most cost-effective among implemented intervention strategies, consistent with the result of

the ACER approach obtained earlier. Therefore, public health centers and policymakers should prioritize implementing insecticide
control for the mosquito population and leptospirosis preventive efforts to reduce the number of malaria and leptospirosis-infected
individuals as well as malaria-leptospirosis co-infected with both diseases in the population with minimal cost.

Conclusion

In this work, we proposed and rigorously examined a new deterministic mathematical model for the dynamics of malaria-
leptospirosis co-infection transmission. We also examined the optimal control problem of the malaria-leptospirosis co-infection

odel to assess the effectiveness of various time-dependent control measures in reducing the burden of both diseases and their
co-infection. We first analyzed the sub-models of the full co-infection model associated with malaria and leptospirosis separately.

he basic reproduction numbers, 𝑅0𝑚 and 𝑅0𝑙 associated with the malaria-only and leptospirosis-only sub-models were obtained by
the technique of the next-generation matrix. Based on the construction of a suitable Lyapunov functional, the disease-free equilibrium
DFE) and endemic equilibrium of the malaria-only sub-model are globally asymptotically stable if 𝑅0𝑚 ≤ 1 and 𝑅𝑚 > 1, respectively.
he existence, uniqueness, and global asymptotic stability of the endemic equilibrium of the leptospirosis-only sub-model for 𝑅0𝑙 > 1

was demonstrated using the construction of a suitable Lyapunov functional and the center manifold theory, and the sub-model
exhibits forward bifurcation. This result is consistent with numerous studies [50,77,78]. The results of sensitivity analysis indicated
that 𝛽0, 𝛽ℎ𝑚 and 𝜇𝑞 are the most influential parameters on the value of 𝑅0𝑚, while 𝜖1, 𝛽ℎ𝑒, 𝜇𝑏 are the most influential parameters on the
value of 𝑅0𝑙. Based on the sub-models’ results, it has been noted that the full co-infection model has unique, globally asymptotically
stable DFE and endemic equilibria [50,77,79]. The global asymptotic stability of the model (3) was numerically analyzed using the
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Fig. 17. Total cost for strategies.

Fig. 18. ACER values for the strategies.

𝑜𝑑 𝑒45 algorithm. The graphical results of the stability analysis show that all solutions of the malaria-leptospirosis co-infection model
converge toward the endemic equilibrium in the long run when max{𝑅0𝑚, 𝑅0𝑙} ≈ 2.8561 > 1, as depicted in Fig. 2. Conversely, when
𝑅0𝑚𝑙 less than one, all model trajectories converge to the DFE of the full co-infection model, as shown in Fig. 3. This demonstrates
that the co-infection of malaria-leptospirosis can be eliminated from the infected population in the long run if 𝑅0𝑚𝑙 < 1, whereas
both diseases will persist if 𝑅0𝑚𝑙 > 1. Moreover, the numerical results of the uncontrolled system (3) suggest that the intervention
strategies that controlling the bacterial population or reducing the biting rate of mosquitoes will sufficiently mitigate the spread
f malaria-leptospirosis co-infection in the population, see Figs. 8–11. Several studies have explored mathematical models of co-

infection between malaria and other diseases [47–52], identifying conditions for the occurrence of backward bifurcation. In this
paper, we demonstrated that backward bifurcation does not occur in the sub-models or the malaria–leptospirosis co-infection model.
urthermore, we provided a comprehensive theoretical and numerical analysis of the global asymptotic stability of steady states of
he autonomous model.

Furthermore, we explored the optimal control model of malaria-leptospirosis co-infection (44) by incorporating four time-
arying control functions; 𝜔1(𝑡), 𝜔2(𝑡), 𝜔3(𝑡), and 𝜔4(𝑡). The Pontryagin maximum principle was employed to establish the necessary

conditions of the optimal control problem. Numerical simulations of model (44) are carried out using an iterative method known as
the forward–backwards sweep in the MATLAB program to determine the most effective optimal strategy for minimizing the objective
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function. We observed that all implemented optimal strategies (𝐴−𝐷) effectively reduced the sizes of infectious human, mosquito,
nd bacterial populations compared to the autonomous system, as shown in Figs. 11–13. Additionally, each strategy had the same
mpact on reducing mosquito populations. However, strategy 𝐷, which implements the four optimal controls, is the most prominent
n minimizing our objective function (refer to Fig. 14(𝑎) and Fig. 13), whereas implementing the two optimal controls, 𝜔2 and 𝜔3

simultaneously (strategy 𝐴), shows to be the most cost-effective strategy. Therefore, strategy 𝐴 has a significant role in reducing the
spread of malaria infection, leptospirosis infection, and their co-infection in the population, particularly when available resources
are limited.
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