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ARTICLE INFO ABSTRACT

Editor name: B. Gyampoh Malaria and leptospirosis are emerging vector-borne diseases that pose significant global health
problems in tropical and subtropical regions. This study aimed to develop and analyze a

f/[e;;: :irad‘g: mathematical model for the transmission dynamics of malaria-leptospirosis co-infection with
Leptospirosis optimal control measures. The model’s dynamics are examined through its two sub-models:
Co-infection one for malaria alone and the other for leptospirosis alone. We apply a next-generation
Global stability matrix approach to derive the basic reproduction numbers for the sub-models. By using the
Optimal control reproduction number, we demonstrate the local and global asymptotic stability of both disease-
Numerical simulations free and endemic equilibria in these sub-models. We perform numerical experiments to validate
Cost-effective strategy the theoretical outcomes of the full co-infection model. The graphical results show that malaria-

leptospirosis co-infection will be eradicated from the population through time if R, < 1.
Conversely, if R, > 1, the co-infection will persist in the population. Furthermore, we
investigate an optimal control model to demonstrate the impact of various time-dependent
controls in reducing the spread of both diseases and their co-infection. We use the forward-
backward sweep iterative method to perform numerical simulations of the optimal control
problem. Our findings of the optimal control problem imply that strategy D, which incorporates
all optimal controls, namely malaria prevention w, (t), leptospirosis prevention w,(t), insecticide
control measure for malaria ws(f), control sanitation rate of the environment w,(f) is the most
effective in minimizing our objective function. We also conduct a cost-effectiveness analysis to
identify the predominant strategy in terms of cost among the optimal strategies.

Introduction

Malaria is an infectious disease of humans caused by protozoan parasites in the genus Plasmodium and transmitted by female
Anopheles mosquitoes through their bites [1,2]. Human malaria is commonly caused by five species of Plasmodium parasites: P.
falciparum, P. vivax, P. malariae, P. ovale wallikeri and P. ovale curtisi [3-5]. P.falciparum and P.vivax are the most prevalent and
deadly malaria parasites, responsible for more than 95% of human infections worldwide [6]. P.falciparum is the most widespread
and dangerous malaria parasite in African regions, particularly in the regions of sub-Saharan Africa. On the other hand, P.vivax is
the predominant parasite outside of Africa, especially in the Americas and Asia [7]. Malaria infection continues to be a significant
health problem, with a high number of cases and deaths reported in tropical and subtropical regions, particularly in Sub-Saharan
Africa. According to the World Health Organization (WHO) report in 2021, there were approximately 247 million malaria cases
and a total of 619 thousand deaths across 84 malaria-endemic countries worldwide. This is a significant rise compared to the 241
million cases reported in 2020 [8,9]. In 2021, 96% of global malaria deaths occurred in just 29 countries. Shockingly, four of
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these countries (Nigeria, the Democratic Republic of the Congo, Tanzania, and Niger) accounted for 52% of all malaria deaths
globally. Of the estimated malaria cases reported in 2021, 234 million cases (95%) occurred in the WHO African region [10]. The
WHO recently reported an estimated 249 million malaria cases and 608,000 deaths in 85 malaria-endemic countries in 2022. This
marked a significant increase in cases compared to 2021. The main country contributor to the increase was Pakistan, followed by
Ethiopia, Nigeria, and Uganda, according to WHO. Of the estimated cases reported in 2022, 94% (233 million cases) were in the
WHO African region, with Nigeria (27%), the Democratic Republic of the Congo (12%), Uganda (5%) and Mozambique (4%), which
together accounted for about 50% of global malaria cases. Moreover, about 96% of malaria deaths globally were in 29 countries,
with Nigeria (31%), the Democratic Republic of the Congo (12%), Niger (6%) and the United Republic of Tanzania (4%) responsible
for more than half of all malaria deaths worldwide in 2022 [1,11].

Leptospirosis is a zoonotic bacterial disease caused by pathogenic species in the genus Leptospira. It affects both humans and
animals [12-14]. Rodents, such as rats and mice, are the main carriers of Leptospira globally, especially in tropical and sub-tropical
regions like Southeast Asia and Sub-Sahara Africa, where the disease is endemic [15,16]. The pathogen is mainly found in the urine
of infected animals (rodents) and can survive in moist soil and water [17,18]. The rodent-born leptospirosis is transmitted to humans
or other rodents most commonly through contact with soil or water that has been contaminated by the urine of infected rodents, or
through contact with the urine of leptospirosis-infected rodents [19-21]. Leptospirosis transmission from person to person is very
rare [22]. According to recent reports, the incidence of leptospirosis was estimated to be 1.03 million cases worldwide, of which
58.9 thousand ended with death [23,24].

Co-infection involves the simultaneous infection of a single host by various pathogen species. It also occurs when two or more
pathogen variants (genetic variations of the same pathogen) infect a single host simultaneously [25,26]. Nowadays, co-infection of
infectious diseases is a major medical concern, significantly contributing to increased mortality rates globally. Approximately 30%
of human infections are likely co-infections, with this rate potentially reaching 80% in some human communities [27]. Malaria
and leptospirosis are bacterial diseases that cause global health problems with overlapping geographic distribution, especially in
tropical and subtropical areas, suggesting a high potential for the coexistence of Plasmodium and Leptospira in the same individual.
Indeed, several studies have well-documented malaria-leptospirosis co-infection cases in the human population. [28] quantified the
prevalence of malaria and leptospirosis co-infection among febrile patients in various tropical and subtropical countries. They also
investigated the association between the two infections. Likewise, [29] reported a high number of malaria-leptospirosis co-infections
in their study. The study suggests that managing malaria and leptospirosis co-infection is challenging due to their similar clinical
presentations and the readily available confirmatory diagnosis for malaria compared to leptospirosis. Focusing treatment on malaria
mono-infections may delay specific therapy for leptospirosis and vice versa. According to the findings in [30], 23.4% of leptospirosis
patients have malaria cases. Moreover, in [31-33], the authors described malaria-leptospirosis co-infection cases in areas where both
diseases are endemic.

Mathematical modeling has become a vital discipline in studying the dynamics of infectious diseases using mathematical tools. It
helps in gaining a better understanding of disease transmission dynamics, predicting the outcome of disease spread, and suggesting
appropriate health control measures for disease eradication in the population. In particular, mathematical models with optimal
control theory play an essential role in devising cost-effective strategies to quantify and mitigate disease spread [34-36].

A lot of mathematical models have been developed to study the dynamics of malaria transmission from various perspectives. [37]
presented a mathematical model to assess the impact of relapse and reinfection on the transmission dynamics of malaria. Their
findings highlighted that both reinfection and relapse significantly influence malaria dynamics. [38] proposed a mathematical model
to analyze the effect of seasonality and ivermectin on malaria transmission, while [39] investigated a deterministic model to show
the effect of drug-resistance strains, treatment, and use of misquotes nets on the transmission dynamics of malaria in Nigeria. [40]
developed a mathematical model using impulsive partial differential equations to assess the effectiveness of indoor residual spraying
(IRS) in reducing malaria transmission. Furthermore, several scholars have applied the optimal control theory to eradicate malaria
infection by incorporating various factors in malaria models. In [41], Dipo Aldila and Michellyn Angelina developed a mathematical
model for malaria transmission dynamics, focusing on the implications of vector bias and the application of optimal control
strategies. Another study [42] examined a mathematical model for malaria transmission dynamics with and without seasonal factors
in mosquito populations and also incorporated optimal control measures like insecticides, prevention, and treatment. Authors in [43]
formulated a two-group mathematical model by age distinguishing between vaccinated and unvaccinated populations for malaria
transmission that incorporates vaccination strategies. The authors used optimal control theory to assess strategies that minimize
malaria infections. The findings highlighted the importance of combining vaccination with other interventions, such as treatment
and personal protection to achieve optimal outcomes. Likewise, many other researchers have applied optimal control theory to assess
intervention strategies for malaria, incorporating factors such as vector bias, relapse, reinfection, and vaccination into mathematical
models to better understand and reduce malaria transmission (see [44-46]).

Some other researchers have developed the co-infection of malaria with other infectious diseases such as HIV [47], cholera [48],
leishmaniasis [49], and COVID-19 [50-52]. On the other hand, [53] studied a compartmental model for leptospirosis and dengue
co-infection in the absence of optimal controls that incorporates susceptible, infected, and recovered individuals for both diseases.

The dynamics of leptospirosis transmission in the absence of optimal controls have been described by several mathematical
models. [54] developed a deterministic mathematical model for the transmission dynamics of leptospirosis. [55] proposed a
mathematical model for the dynamic behavior of leptospirosis with saturated incidence. They examined the stability analysis of the
steady states of their model. [56] modeled the dynamics of leptospirosis using a compartmental approach. Also, [57] developed and
examined a mathematical model for the dynamics of leptospirosis transmission in human, rodent and bacterial populations. While,
mathematical studies [58-61] have explored the dynamics of leptospirosis using the application of the optimal control theory. The
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primary aim of infectious disease modeling is to develop effective interventions for controlling and ultimately eradicating diseases.
Additionally, mathematical models that employ the optimal control theory are essential for developing cost-effective interventions
to achieve these objectives. Leptospirosis-malaria co-infection is common in tropical and subtropical regions due to their similar
geographical distributions. Both diseases share similarities in clinical symptoms. The prevalence of their co-infection cases has
been reported subsequently in the literature. To the best of our knowledge, the dynamics of malaria and leptospirosis co-infection
transmission has not been described by a compartmental mathematical model. This overlooked aspect motivates us to study the co-
infection dynamics between malaria and leptospirosis. The goal of this study is to propose a novel deterministic mathematical model
that provides a detailed analysis of the qualitative and quantitative dynamics of malaria-leptospirosis co-infection. Thus, we develop
and rigorously analyze a mathematical model for malaria-leptospirosis co-infection, which incorporates their key biological and
epidemiological characteristics. We shall also explore an optimal control model of malaria-leptospirosis co-infection by integrating
four control measures: two for malaria (prevention against mosquito bites and insecticide control measures) and another two controls
for leptospirosis (leptospirosis prevention and the control sanitation rate of the environment). We apply optimal control theory to
identify the most effective strategies (in terms of efficacy and cost). The study employs Pontryagin’s maximum principle (PMP) to
solve the optimal control model.

The paper is structured as follows: In Section “Model formulation”, we present the formulation of our proposed co-infection
model. In Section “Model analysis”, we present the detailed analytical analysis of this model, with Section “Malaria-only model”
and Section “Leptospirosis-only model” focusing on the malaria-only and leptospirosis-only sub-models, respectively, and Section
“Malaria-leptospirosis model” presents the full malaria-leptospirosis co-infection model. The numerical simulations of the au-
tonomous model and discussions are given in Section ‘“Numerical simulations”. Also, the optimal control model and its mathematical
analysis are presented in Section “Optimal control analysis of the malaria-leptospirosis model”. Finally, we conclude the paper in
Section “Conclusion”.

Model formulation

To formulate the transmission dynamics of the malaria-leptospirosis co-infection model, we consider three population groups
at time t: a human population N, (t), a mosquito population N,(f) and a rodent population N, (f). At any time ¢ the total human
population is grouped into nine epidemiological states: susceptible humans .S}, (f), humans exposed to malaria E,, (), humans infected
with malaria 7,,(r), humans exposed to leptospirosis E,(t), humans infected with leptospirosis /,(¢), humans infected with both malaria
and leptospirosis I,,(), humans recovered from malaria R,,(r), humans recovered from leptospirosis R,(f), humans recovered from
both malaria and leptospirosis R, (7). Thus,

N,t)=S,0)+E,®)+1,0)+ E@®)+ [;(t)+1,(t)+ R, (1) + R;(t) + R,,;(?). 1)

While the total mosquito and rodent populations are subdivided into the following states: .S (#) and I,(r) representing susceptible
mosquitoes and infected mosquitoes, respectively; .S,(r) and I,.(f) representing susceptible rodents and infected rodents, respectively.
The total mosquito population N,(r) and the total rodent population N,(r) are given by

N (1) = S, + 1,(0), N,(t) = S,(t) + 1,(0). )

Also, the concentration of the pathogens in the environment at time ¢ is represented by B(r). The recruitment rates for human, malaria
and rodent populations, are denoted by 4, A, and 4,, respectively. Susceptible humans could become infected with malaria, at a rate

I
of 4, = %, where f,,, is the probability of malaria transmission per bite in humans and f, is the biting rate of mosquitoes per

day. Susceptible humans could also acquire leptospirosis, at a rate of 4, = Z ":::
rates in humans, the nonlinear term HLB is contact probability between susceptible humans and contaminated environment, and the
constant « is the pathogen concentration. Infectious individuals with malaria could become infected with leptospirosis at a rate of
7, 4;, while infectious individuals with leptospirosis could become infected with malaria at a rate 7,4,,, where the coefficients r; and
7, represent susceptibility to a second infection. It makes sense that those who have one of the diseases will be more susceptible to
getting the other since both malaria and leptospirosis affect the immune system. 7, and 7, é (satisfying z,, 7, > 1) are the modification
parameters that account for the increased infectiousness of co-infected persons caused by each disease. Susceptible mosquitoes could
acquire malaria infection, at a rate of 4, = w, where f, is the probability of malaria transmission in mosquitoes. While,

susceptible rodents could acquire leptospirosis infection, at a rate of 4, = LB \where B, is leptospirosis transmission rate in rodents.
r k+B s

Moreover, the recovery rate from the co-infected class is represented by 6, individuals in this class may transfer to either malaria
only infectious at a leptospirosis recovery rate of &0, transfer to leptospirosis only infectious at a malaria recovery rate of &,0, or
become recovered from both diseases at a rate of (1 - +.f;’2))19, where ¢, and &, fractions between 0 and 1. Furthermore, individuals
in I,, recover a rate of y,,, and they become susceptible humans or recovered humans with probabilities of { and 1 — ¢, respectively,
where ¢ € (0,1). It is assumed that there is a higher chance of individuals in 7,, becoming susceptible than individuals recovered
from this class (i.e, ¢ > (1 —¢)). In the formulation of the model, additional assumptions are made as follows:

+py,.1., where g, and f,, are leptospirosis transmission

(i) Humans could acquire malaria infection through contact with infected mosquitoes, while susceptible mosquitoes could acquire
malaria infection through contact with malaria-infected humans or co-infected humans [37,50].

(ii) Humans acquire infection of leptospirosis through either contact with infected rodents or contact with contaminated
environments (soil or water) [20,21,57].
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Table 1
Description of parameters of the model (3).

Parameter Description Value Source
A Human population recruitment rate 4 X N,(0) Humans day™' [61]

Brm Probability of malaria transmission in humans per bite 0.0044 Day™' [39,62]
a,, Progression rate from exposed class to malaria infectious humans 0.0833 Day™' [43]

Y Recovery rate of malaria infectious humans 0.00014 Day ™' [42,63]
P Waning immunity rate of R,,(r) 0.005 Day™' [42,63]
u Natural death rate of humans m Day™! [39,42]
Po Mosquitoes biting rate 1 [37,47]
Bre leptospirosis transmission rate in humans from the environment 0.00047 Assumed
Bhr leptospirosis transmission rate in humans from rodents 0.0004 Assumed
@ Progression rate from exposed to leptospirosis-infected humans 0.003 Day~! [60]

7 Recovery rate of leptospirosis infected humans 0.0027 Day ™" [53]

n Waning immunity rate of R,(r) 0.00285 Day ™" [53,60]
0 Recovery rate of co-infection 0.00014 Day™! Assumed
7 Modification parameter for enhancing leptospirosis infection 1.02 [37,39]

in humans due to malaria infection
7, Modification parameter for enhancing malaria infection 1.01 [37,391
in humans due to malaria infection

& Recovery rate of leptospirosis in co-infected class 0.45 Assumed
& Recovery rate of malaria in co-infected class 0.35 Assumed
¢ Probability of individual in I,, becoming susceptible human 0.75 Assumed
A, Recruitment rate of mosquitoes Hy X N,(0) mosquitoes day™! Assumed
B, Malaria transmission rate in mosquitoes 0.0044 [39,64]
Hy Natural mortality rate of Mosquitoes # Day ™! [64,65]
A, Recruitment rate of rodents 0.285 rodents day’I [59]

b, Leptospirosis transmission rate in rodents 0.000003 [59]

Hy Natural mortality rate of rodents 0.0018 Day™' [58]

My Bacteria removal rate 0.05 Day’1 [57,61]
K Pathogenic concentration in environment 7000 pathogens Assumed
€,6 shading rates of B from I, and I,,, respectively logo(8.1x108) day™" Assumed
€ The rates at which the size of B increase by class 1, log;o(8.1 x 10%) day™ [59]

(iii) Rodents acquire infection of leptospirosis through contact with contaminated environments (soil or water).
(iv) We assumed that humans with malaria are susceptible to infection with leptospirosis and vice versa based on several case

reports on the co-infection of the two diseases [28,30,33].
(v) Also assumed homogeneous mixing between human and rodent populations [57].
(vi) The incidence from the contaminated environment to humans is assumed to be modeled logistically [57,61].

The description, values and sources of the model parameters are given in Table 1 whereas flow diagram of the model is provided

in Fig. 1.
From Fig. 1, the model is described by the following system of non-linear ODEs.
ds, dR
d"_éh = A+ &Ly + PRy + R+ Py Ry = (A + 4+ 1) Sy /_,' =l =+ 1Ry,
m Rm
= =4Sy — (@ + WE,, = (=& + &0y = (P + Ry
dl, 45,
Lo 4, B+ 8,00, ~ G+ 1+ Ty A, ] =Aq—(/1q+,4q)sq,
Py dI
dd_ltl =4Sy — (o + WE,, dd_g = 4¢Sy = Hly 3
L = qE 600, — i+ p+ A, - =AM (/1,+ﬂr)Sr,
dl,, dl, —
T =T1/1,1m+‘[2/1m11—(6+ﬂ)1m1, ar =48, —ul,
d
Lo (1= Orly = (o + WR,y, L =el+el, +el, - 1B,
BrmPol, Bpe B ByPoUm+1m) BB
where, 1, = —"N: L, dy = e Pyl hy = "ON—h',/l, =2

Model analysis

In this section, we consider the qualitative analysis of the two sub-models of the model system (3), as well as the full co-infection
model.
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Malaria-only model

Fig. 1. The flow diagram of the model.

By setting E;(t) = I,(t) = I,,,(t) = R,(t) = R,,;(t) = S,(t) = I.(t) = B;(t) = 0 in (3), we obtained the following malaria only model:

(dS, PrmPoly
T :A+§7mlm+mem_( Nh H)Sh»
dE,,  Pumbol
d—t’" = %Sh — (@ + WE,,
dI,
e By = v+ )1,
4R @
2 = U= Oy = (o + 10ORy,,
s, N ByPol,
T = (R )
ﬂ _ ﬂqﬂOImS _ T
( ar = TN, 0 Hde
where,
N,=S,+E,+1,+R,,. (%)
Consider the region
6 . A A
1, = {(Sh,Em,Im,Rm,Sq,Iq) € RNy <IN, < ”—}. 6)
q

It is easy to show (see, for example, [47,50]) that all solutions of the system (4) starting in IT,, will remain in this region for all
t > 0. As a result, I1,, is positively invariant and attracts all solutions of (4) [66]. Thus, it is sufficient to study the dynamics of the

model (4) in I7,,.
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Stability of the disease free equilibrium of the malaria-only model
The disease-free equilibrium (DFE) of the malaria-only model system (4) is obtained by setting each of the equations of the
system (4) to zero and solving for S, and S,. Also, at the DFE there are no infections and recovery. Thus, the DFE point of the
system (4) is given by
. A Aq
* * * _ a _4
eOm_(Sh,o,o,o,sq,o)_(M,o,o,o, ﬂq,o). @
By applying the method of the next-generation matrix [67] to the system (4), the associated basic reproduction number (Ry,,) is
obtained as follows: The new infection terms F(r) and the rate of transfer of individuals to the compartments V (¢) are given by:

Brmbol
N, Sh (a, + WE,
F@) = 0 ,and V(1) = | —a, E,, + Oy + )1, |-
ByPolm
NS Haly
Thus, the associated Jacobian matrices of F(¢) and V() at egm are denoted by F and V, respectively, given as follows:
0 0 Brmbo (@ + 1) 0 0
F=|0 0 0 |, andv =| -a, Y+ O
0 ByBoAgm 0 0 0
Auq H q

Therefore, the basic reproduction number of the malaria only model (4) is given by

A BB,
— =1y — 4 a0
Fom = p(EV0= J A2+ 107+ 1) ®

Thus, based on Theorem 2 of [67], the following result is established.

Theorem 1. The DFE, ¢; , of malaria-only model system (4) is locally asymptotically stable if R;,, < 1 and unstable if Ry, > 1.

Global asymptotic stability of DFE of the malaria-only model
We follow the direct Lyapunov method [68], to establish the global asymptotic stability of e, , which requires a scalar function
Iy(x), x € R® defined on an open set, U, in II,,, containing €;,, and satisfying the following conditions.

@) Iyeg,) =0,

(i) Iy(y) >0, forall y € Uy \ Eom’
(iii) 4 <0, for all y € Uy \ ¢}, and

an

— *
o= 0 at €om*

The following result is established for global asymptotic stability of e, .

Theorem 2. The DFE, ¢; , given by (7) of the malaria-only model system (4) is globally asymptotically stable (GAS) if Ry, < 1.

Proof. If R, < 1, there is a unique locally asymptotically stable DFE accordingly Theorem 1. Consider the following a Lyapunov
function
gy + 1)
FO(Em’ Im’ 1) = ”mEm + a—Im + ﬂhmﬂOIq'

m

The time derivative of I}, derived along the solutions of the model system (4) is given by

Hy(a, + 1)
I} =u,El + %Iin+ﬂhmﬂ01‘;
m
()]
BrmbPol pg(a, + u) B, Pol
=ﬂq( ”;V qSh_(a;n+”)Em)+L(“mEm_(ym+”)Im)+ﬂhmﬂ0( . qu_”qI )

m

Sy A .
Note that ~ < land S, < ﬁ in Uy \ €5, It follows from (9) that

Holay, + 1) B.BoA ul
r(; < ﬂq(ﬂhmﬂ()[q - (am +”)Em) + L(amEm - (ym +”)Im> +ﬁhmﬁ0(% _ﬂqlll>
m q
Ha (@, + 1) ByBrmBaAGul,
< BrmbottaTy = (@ + W Ep + @y + W) Ey = =y + 1)Ly + =St = ot 1,
m q

. (ﬂqﬁhmﬁgflqﬂ Mg+ G+ 1) )Im

Apy a,

- My (@ + WV + 1)
a

(R2, = 1)1, <0 when Ry, <1.

m



H.A. Engida and D. Fisseha Scientific African 27 (2025) 02517

Since the model parameters are non-negative, I7(t) < 0 in Uy \ ¢; and if Ry, < 1, and Iy = 0 if and only if E,, = I, = I, = 0
(or at €¢* ). Thus, based on Lasalle’s Invariance Principle [68], (Em(t),Im(t),I (t)) — (0,0,0) as t — oo. Substituting the relation

Om

(Ep(®), 1,(1), I,(1) = (0,0,0) into the model system (4) yields the following system

AAG) A+p,R, — uS,
R.O|=| -(n+mwR, | (10

S"](t) Ay = HgSy

The solutions for 2nd and the 3rd linear ODEs of (10) can be easily found as:

A
Ry(1) = Ry, ()00 S (1) = ”—q (1 - e_"ﬂ') +8, (0, 11
q

It follows from (11) that R,,(r) — 0 and S, — % as t — oo, regardless of the initial population sizes R,,(0) and 5,4(0).
Lastly, using the first equation of (10) and (1f), we get

SH(®) = A+ py R, (0)e™ P — 1S, (1), 12)
Solving (12), yields

S, = % + S,(0)e™ — R, (0)ePnti), (13)
Clearly, S,(t) - 4 ast — oo, with the initial population size. Consequently, every solution trajectory of the system (4) with the
initial population size in II,, converges to ¢; ast — co when R, < 1. Biologically, this indicates that the susceptible individuals

do not get additional infections if R, < 1. Thus, the malaria infection can be eliminated from the population in the long term if
Ryn <1. O

Existence of the endemic equilibrium of the malaria-only model
The endemic equilibrium point of the model (4) is a state, which is the solution set to the following system.

At Crully+ 0B, = (2,4 1)} =0,
A5 SE — (@ + WES =0,
&, E}y = (1 + 1, =0,

A=yl = (o + R}, =0, 14)
ﬂqﬂOIr: *
Aq_( N; +”")Sq =0,
Bboly
TS; - [qu; = 0,
h
where,
BrmbPoly
e 49
Ny
Solving the system of Egs. (14) at the endemic equilibrium denoted by ¢}, = (S}. E;,. I, R;,. Si. I7), yields, Sy = %W, E: =
2w opr _ (=07 s ox — _ ANy
ay, Im’Rm T T4 Im’Sq - Bobolm+ugN;’
. Ady b3 2, . ABBI
m = *Tg T aNE % (16)
rbabsp+ s (a1 = O + s (wn+ gy )| 1 1N Pabongl
where, ¢; = a,, + p, ¢y =1, + 4, and ¢3 = p,, + p.
The Eq. (15), yields
A* AJ’<
Ir= = h a7
ﬂhmﬂ()

Note that N denotes the value of N, at €] , solving for it at €], , gives N, = % Thus, by combining the Egs. (16) and (17), we
obtain the following quadratic polynomial equation in 4} given by

An (A2 + Ap) =0, (18)
where,

2 2
A= %Mﬁ |ttt = &)+ 3 (@, B+ 10+ iy )| + %ﬂqﬁoamllq%» and

7
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A2 5 2
A = 7,4q¢,¢2¢3(1 - ROm).

Clearly, the coefficient A, is always positive and A, is positive if and only if R\, < 1. Thus, the quadratic Eq. (18) has a unique
positive solution given by 4* = —2—? when R, > 1, which is feasible (or biologically meaningful). This indicates that the model

system (4) has a unique positive endemic equilibrium if Ry, > 1. On the other hand, 4, > 0 for R, <1, as a result A = -0 <0,
which is not feasible biologically. As a result, the model system (4) has no positive endemic equilibrium when R, < 1. Furthermore,
the result shows that the system (4) has no chance of experiencing backward bifurcation. Consequently, we have established the
following result.

Theorem 3 (Existence of the Endemic Equilibrium). The malaria-only model (4) has
() a unique positive endemic equilibrium if R, > 1,
(ii) no endemic equilibrium otherwise.

Global asymptotic stability of the endemic equilibrium of the malaria-only model
For Ry, > 1, there exists a unique endemic equilibrium, ¢} , of the model system (4) accordingly Theorem 3. The following
result deals with global asymptotic stability of e}, .

Theorem 4. For Ry, > 1, the endemic equilibrium, ¢}, of the model system (4) is GAS in II,, \ m, { (Shs> Eps Tys Ryyy Sy 1)

Em=Im=Iq=O}.

Proof. Consider the following candidate for a Lyapunov function which is defined on an open set, Uf,’,, containing origin:
2 2

T(Sps By Ly Ry Spo T,) = -((s,, — S+ (B, — E5) + (I, = I2) + (R, - R;;)) + %(}gsq —SH+, - 1;)) , with its time derivative

dr,, " " N " ds, dE, di,, dR,,
_=(Sh+Em+Im+Rm_(Sh+Em+Im+Rm))<7+ ar +7+7)+

dt
s I, S I as, dli, 19
+ o+ )( + — )
( a ~( ) dt dt
It is observed that the system of equations in (14) at the disease existing equilibrium point gives,
A " T . A _—
;:Sh+Em+Im+Rm, ”—=Sq+1q. (20)

q
Because model parameters and variables of infective classes are non-negative, combining the Egs. (4), (5), (6), (19), (20), gives,

drm ( A Ail
= (5 )+ (4= ) ()
dt h " h q H, q g

() (1-) - (32 1),

3

dt

q
2 A 2
e —[ﬂ(é - Nh) +/4q(—q - Nq> ] < 0.
i Hy
As aresult, I' <0 in I1,\ II° when R, > 1. Since I}, is a well-defined candidate for the Lyapunov function in II,, and by Lasalle’s
Invariance Principle [68], we conclude that e’lkm is GAS when R,,, > 1. This result indicates that every trajectory of the model (4)
solutions with initial population sizes in IT,,\ 1I?, eventually moves towards the respective unique endemic equilibrium, e, of the

model for R, > 1. In biological terms, the malaria infection will endure within the population as long as if R, > 1. [J.

Sensitivity analysis of the malaria-only model

In this section, we carry out sensitivity analysis for R, using a normalized forward sensitivity index to identify parameters that
significantly influence R,,. This helps in determining appropriate intervention strategies to reduce the spread of malaria. We use
the method presented in [69-72] to compute the normalized forward sensitivity index of R, with respect to a given parameter p,
as follows.

JR
yfom = Z0m o P 1)
dap Ron
The parameter values for performing sensitivity analysis of R, are provided in Table 1. Using relation (21), the sensitivity index for
each parameter of R, is determined and presented in Table 2 in descending order of sensitivity, with the most sensitive parameter
listed first.
Thus, it can be seen in Table 2 that the parameters fy, f,, By 4,45 @, and u have positive impact on R,. Conversely, the

parameters y,, A and y,, have negative influence on value of Ry,
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Table 2

Sensitivity indices of R, to parameters in
malaria only model (4) using parameter values
in the Table 1.

Parameter Value Sensitivity index
Bo 1 1
L -1
Hq 5
Brm 0.0044 0.5
b, 0.0044 0.5
A 1 X N,(0) -0.5
A, H X N,(0) 05
Ym 0.00014 —-0.3908
1
70x365 0.3905
a, 0.0833 0.0002

For instance, if f, is increased or decreased by x%, then R, will also increase or decrease by x%. Also, decreasing value of g,,, by
10% would decrease value of Ry, by 5.1309%. In contrast, increasing value of u, by 10% would decrease value of R, by 4.6491%.
Furthermore, based on the results in Table 2 the parameters that have a high impact on Ry, are; fy, iy, S, and u,, whereas the
parameter «,, has the lowest impact on it. This shows that controlling the mosquito biting rate or transmission rate among humans
and infected mosquitoes will effectively reduce the spread of malaria. Also, control strategies that increase the natural mortality
rates of mosquitoes will be effective in reducing the spread of the malaria epidemic in a community. Moreover, the impact of the
most influencing parameters on R, is demonstrated graphically in Section “Impact of fy, f,, #, o0 Ry,,”.

Leptospirosis-only model

The leptospirosis only model is obtained by setting E,, (1) = 1,,(t) = L,,(t) = R, (1) = R, (1) = S,(t) = I,(t) = 0 in (3), given by

ds,
r =A+p R = (4 + 1)),
S = (@ + WE
2 MPh a + pLy,
Wi B~y + w1
dr =o by =+ i,
dR
d_tl =y —(p + Ry, (22)
ds, 5.B

=A —( — + )S,

dt r~\k+B M)
al, 5B
— = S, — w1,
ar x+B M
dB
E :€]II+€3II‘_”IJB’

where, A, = i ":g + By, 1.. The biologically feasible region for the model (22) is given by

7 . A Ar €* A Ar
1, = {(Sh,E,,I,,R,,S,,I,,B) RNy <IN, < LB (it } (23)
r r

such that every solution of the system (22) starting in I, remain in II; for all r > 0 [47,50], where, ¢* = max{¢,¢,}. Thus, the
region 1, attracts all solutions of the system (22), and it suffices to consider the dynamics of the system (22) in II;.

Stability of the DFE of the leptospirosis-only model

The DFE of the leptospirosis-only model system (22) is obtained by setting each of the equations of the system (22) to zero and
solving for .S, and S,. Thus, the DFE point of the system (22) is given by
A
e = (55.0,0,0,5%,0) = <ﬁ,o,o,o,—’,o,0>. 24)
H He
By applying the method of the next-generation matrix [67] to the system (22), the associated basic reproduction number (R,) is
derived as follows: The associated Jacobian matrices of F and V at ¢, are given by

PuA  BreA
0 0 == e @+m 0 0 0
00 0 0 — ) 00
F= , and V = ! !
00 0 /’;—" 0 0 0
0 0 0 0 0 —€ —€3
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Therefore, the basic reproduction number of the leptospirosis only model (22) given by

1
Ry = p(FV™) = 3 <(R81h + Rorp) + (R, + Ry 2 + 4R5,hR67h> , (25)
e _ Phe A€ _ hAes pr _ P re _ Brdrel ; i ili
where, R, = T Ry, R RG, pre—_ and R, P According to Theorem 2 in [67], the local stability

of DFE is given by the following result.

Theorem 5. The DFE, ¢, of leptospirosis-only model system (22) is locally asymptotically stable if Ry, < 1 and unstable if Ry, > 1.

Global stability of the DFE of the leptospirosis-only model
We shall use the method illustrated in [70,73,74] to investigate the global asymptotic stability (GAS) of DFE point of the model
system (22). First, the model (22) should be written in the form:

Y _ew.w),
;IfV (26)
SE = HYV. W) HYV.0) = 0.

where V' = (S}, R, S,), represents uninfected classes and W = (E,, I}, I,, B) denotes the infected compartments including the class of
pathogens. The DFE point, ¢, of the system (22) is guaranteed to be GAS if Ry, < 1 (which is locally asymptotically stable (LAS))
and the following two conditions C; and C, hold:
C;: For % =G(V,0), if VO* = (ﬁO %) is GAS, where, VO* denotes the DFE of this system.
OH(V*,0)
Cy: HV,W) = DW — H*(V,W),H*(V,W) > O,Y(V,W) € I, where D = #

v _ (A A,
V5.0 =€, = (£,0,0,0,2,0,0).

is a Metzler matrix. Note that

Theorem 6. The DFE, e(*;l, given by (24), is GAS for the model (22) if Ry < 1.

Proof. We simply need to show that the conditions C; and C, hold provided that R, < 1. Substituting E, = I, = I, = B = 0 into the
system (22), yields

G A+ p R, — uS, A A
GV.0)=|R|=| —(p+wR, |.Vy= (;,o, ”—’) (27)
S:(t) Ar - /’lrSr ’

Note that the 2nd and the 3rd equations of (27) are linear ODEs and their solutions can be easily found as:

A
R,(1) = R, (0)e™ 1" 5 (1) = =~ (1 - e_"”) +5,(0)e . (28)

r

Also, from Egs. (27) and (28), we get

Si(t) = A+ R0 — 1S, ). (29)
Solving (29), gives

S,(t) = % + .5,(0)e7H — R, (0)e~ i1t (30)

Now, suppose that the time, 1 — co, we need to show that V' — vy Clearly, R;(r) —» 0 and S,(t) > % as t — oo, regardless of the
initial population sizes R,;(0) and S,(0). Thus, S,(r) — 4N h» @S 1 —> oo, with the initial population size. Consequently, every point

with respect to this condition converges to VO* = (ﬁO %) Hence, VO* = (%0 %) is GAS.
Next, we consider ' "

Pne B A oA
(K’L—B + ﬂ;ﬂ,) Sy — (o + WE; —(o; + p) 0 ﬂh,, ﬁ‘h(_ﬂ
@ Ep = (r + w1, « - +m) O 0
HV, W)= Fon S’ I’ , thus, D= 0’ 10 | (31)
(m> r T B Br A
e, + eI, — u,B 0 € & -,

Clearly D is a Metzler matrix, and

A PreB [ A K
Dty (3 = 5) + 2 (3 = 550)
0
H*(V,W)=DW —HV,W) = 5B (ﬁ D ) . (32)
Hy k+B T

0

K

10



H.A. Engida and D. Fisseha Scientific African 27 (2025) 02517

i K A ek 4 _ PneB (A _ _x BB (A _k_
Smce,OsHBS,,sShsM (.K+le),ﬂh,1,(ﬂ S,,)+ . (” HB’S,,)20.Inthesarnemanner, = (/4, HBS,)ZO.

Hence, H* (V. W) > 0 V(V.W) € II,. Thus, ¢, = f,o, 0,0, ;‘—:,0,0 is GAS.

Epidemiologically, it recommends that the leptospirosis infection can be eliminated from a population as long as, for Ry, < 1.
Furthermore, the result shows that the system (22) has no chance of experiencing backward bifurcation at Ry, = 1 when R, < 1
since DFE is the only positive (stable) equilibrium point for Ry, < 1. [

Existence of the endemic equilibrium of the leptospirosis-only model

Solving the leptospirosis-only model (22) at disease existing equilibrium denoted by e;‘l = (SZ,E;‘,I;*,R;‘,S;‘,I;‘,B*), gives,

* __ A‘,3+7WIII* * _ Q * E I * A Bpe
Sh= J3(A7+n) B = Q 1Ry = J3 15 = B @+t Bpe’
A B, D Ao J AT D
I, = +Pre , 1= ! -, B = i(el I+ e1,), (33)
He (B,® + HyPe) uyJyds + (I 0205 = apivy) 4 Hp

where, A¥ = @ + f,,1,.® = iﬁ,J] =q+mdy=vy+mdy=p +u

We demonstrate the existence and local stability of the endemic equilibrium of the leptospirosis-only model based on the direction
of bifurcation. The direction of bifurcation can be illustrated using the center manifold method introduced in [75]. Let us consider
the following change for the variables of the system (22). Let (Sh,E,,I,,R,,S,,I,,B)T = (xl,xz,x3,x4,x5,x6,x7)T = X. Thus, the
system (22) can be rewritten in the form as

dX .
Zr = FOO.with F = (11, /2. f3. fu- f5: for 1) (34)
Hence, Eq. (22) can be expressed as:
dx, Brexq
- =fi=A+px,— (K:x7 +ﬂh,x6+ﬂ)x1,
dx, Bexq
- = fr= (#}(7 + ﬂh,x6>x1 — (a; + p)x,,
5y +m)
— = fa=wx, — X3,
dt 3 1 X2 — ¥y + H)X3
dx,
d_t4 = fa4 =11x3 = (o + W)xy, (35)
dxs Brxq
= (B
dt fs " \k+xy, )X
%zf =< brxa )x — U, x
dt K+x, /75 6
dx;
e Jf1=€1x3 + €36 — upx;.

Taking f,, as bifurcation parameter and solving for f,, = i, at Ry = 1, from (25) gives that

. kppy(ay + W) + 1)
Bre = [1 = (RO + Roiy + Ry, R(ﬁh)] A ’ (36)
€]
where, R}, + Ry, + Ry, Rij, =1 for Ry, = 1. Note that Eq. (25) satisfies
2
R;, = (R, + Ry )Ry + Ry, Ry, and RS, + Ry, + Ry, R, =1, at Ry = 1. (37)
The Jacobian matrix of the system (35) at (e&, ﬂ;e) is obtained as
_ A A
U 0 0 P 0 P’ ﬂfﬁ
0 -5 0o o o et et
H Kp
0 o -J, 0 0 0 0
J(y B =1 0 0 nw —J; 0 0 ,9 ,
Ay
0 0 0 —H, 0 —ﬁ¥
0 0 0 0 0 -u
0 0 € 0 0 €3 — MUy

where, J; = a;+u,J, =y, +u,J3 = p;+ pu. Thus, the characteristic polynomial equation of J(eg,, ;) is given by | J(ej;. B;,) — Al7y7 |=
0 A4+ WA+ )4+ (p; + W)P(A) = 0, where,

P =2 +0, 2 +0,4+0;, (38)
with,

O, =J,+ I+ u, + py,

11
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p.A
0) =J1(Jy + pp + ) + Io(pt + pp) + phopiyy + Krﬂr

€3,
r
B.A B, B.A
O3 = Iy oty + Ty Jypty + Tyt + Jo ity = Iy = €3 — a6 —— — Jy—¢3
K, KH K Hy
=T Do, + I Loy (1= RS, ) + pep(Jy + o) (1= Ryy,).

Clearly, 4, = 0,4, = —p, A3 = —p,, A4, = —(p; + p) are the four eigenvalues of J (e(’;],ﬁ;;g). Because each of the model parameters is
non-negative, and R, <1, Ry, <1, at Ry, = 1, it follows that 0, > 0,0, > 0,03 > 0 and 0,0, - Q3 = JZ(Jz +u 4+ py+ ﬁ’ ’eg) +

Jy(Qy — popp) + (u, + pp)0p + (J; + Jz)ﬁ*l"e +a ﬁ"; €; > 0. Thus, by Routh’s criterion, all roots of P(4) in (38) have negative real
parts. Consequently, J(e;,, f;,) has a simple zero eigenvalue with all other eigenvalues having a negative real part. Therefore, the
center manifold theory [76] can be used to study the dynamics of (35) near ﬁhe Now, following the approach in [75], J (eOI, ﬁhe
has a right eigenvector corresponding to zero eigenvalue, given by 9 = (8,,9,, 93,94, 95, %, &7)T, where

oy + JrJ3) + o J- a
9, = emt Rl vl o g 50 9,2 %e, 50, 9,= Loy >0,
HJyJ3 Iy I3
A€ Kp?
sz—ﬂz”” 8, <OC Ry, =1 <0, for Ry =1), 95=~95>0, 9 =-—"095>0.
Kpph; Jo(Royr — 1) Ay
Also, J (egl, ﬁ;e) has a left eigenvector, i = (11,12, 13,14, 15, Igs 17)T associated with A = 0, satisfying 9.1 = 1, with
J Aaje) + JyJope JiJ
=0 1=1>0, l3=—112>0, 1, =0, 15=0, 16=M12>0, l7=1—212>0
a A HELHy €1

By computing non-zero partial derivatives of f at ¢* the bifurcation constants defined by

or

n n

P fi
a= Yy o -(¢jy B and b= ) 1k19,a ﬂ* (€3 b1
ki j=1 k.i=1
are given by
_ ’2‘9§ €, (Bp By + kuPulayy; + JpJ3) + a T3] N ZﬁZrA(ela,)z
Jomy(1 = Ryy,) kupp2Jr(1 = Ry, K2 ppp(l = Ryy,)
Aa; + JyJyJ- A +2
i B Ay 14273 +ﬁr r“lfl(ﬁrz Hy) ]<0’ and
U ((97M)
P/ i
b= 121976 o (€5 Br) = 1297 K“# > 0, (always ).

Based on the computed values of a < 0 and b > 0, it follows from Theorem 4.1 in [75] that the leptospirosis-only model (22) will
exhibit forward bifurcation at Ry, = 1. As a result, the model’s endemic equilibrium exists, is unique, and is locally and globally
asymptotically stable [77,78]. This means that the disease can be eliminated from the population in the long term, if R;, < I.
Moreover, the result for the global asymptotic stability of e}, is summarized below, with the proof provided.

Lemma 1. The unique endemic equilibrium, €}, of the leptospirosis-only model (22) is GAS in II; \ H[0 provided that Ry > 1,

HIO:{ Sy En 1. RS, 1,B): E,=1,=1,=B= 0}

Proof. Consider the following candidate for a Lyapunov function: I;(Sy, E;, I}, R, S,,1I,, B) = %((Sh =SH+(E -EH+U -1+

(R, - R;“)) + 5((5, -5+, - Ij)) + 5(3 - B*) , with its time derivative :

an _ (S +E+1,+R (S*+E*+I*+R*)>(dsh LN/ de)+
de — \ThT AT e S AN T TR TRPT: 39)
(s, +1.-es7+10)( 45, ‘”’)+(B—B*)@
" dt dt dt’
Solving the system (22) at ¢}, yields,
A A .
;:SZ+E[*+II*+R7, M—’:Sj+1j. (40)
r

Since, N, < ﬁ, N, < %, and B < e*(’;1 + ﬁ—r>, where ¢* = max{e;,e,} (see Eq. (23)), combining, the Egs. (2), (22), (39), (40),
yields, ' '

U (0= ) =) (-2 1) o - (e 2 (4 ) -

() () (B2 <l ()

12
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Table 3
Sensitivity indices of R, to parameters in leptospirosis-
only model (22) using parameter values in the Table 1.

Parameter Value Sensitivity index
€ log,(8.1  10%) 0.9987

A X N, (0) 0.9987

Bre 0.00047 0.9975

Hy 0.05 —0.9989

K 7000 —-0.9989

7 0.0027 —0.9846

" = -1.0260

a 0.003 0.0129

U, 0.015 —0.0023

b, 0.000003 0.0012

A, 0.285 0.0012

P 0.0004 0.001

e log;o(8.1 X 10%) 0.00003427

2 A 2 A z
(& w2 )-8 <o
u Hy U H,
As a result, % <0in 7, \ H,O and for Ry, > 1. Since I is a well-defined candidate for the Lyapunov function, we conclude that
the endemic equilibrium is GAS whenever R, > 1. This indicates that every trajectory of the model solutions in the long run moves
towards the unique €%, in IT; \ 11, as 1 - co.

Sensitivity analysis of the leptospirosis-only model

In this section, we perform the sensitivity analysis for R, using a normalized forward sensitivity index to determine the
parameters that have a high impact on Ry, which helps in providing appropriate control measures in reducing the spread of
leptospirosis. Using the relation (21) the sensitivity index to each parameter of R, are given and arranged in Table 3 from the
most sensitive parameter to the least sensitive.

From Table 3, we noticed that the parameters ¢, f,,. 4, have the most significant influences on R, compared to others. For
instance, decreasing the value of g,, by 15% would result in a decrease in the value of Ry by 14.961%. Likewise, decreasing or
increasing the value of ¢; by 15% would result in a decrease or increase in the value of R, by 14.982%. In contrast, increasing the
value of y;, by 10% would decrease value of R, by 9.0788%. The sensitivity analysis of the leptospirosis-only model indicates that
controlling the transmission rate among humans and contaminated environments will effectively reduce the spread of leptospirosis
and leptospirosis-malaria co-infection. Also, control strategies that increase the natural removal rate of pathogens in the environment
will be effective in reducing the spread of the epidemic in the community.

Malaria-leptospirosis model

The feasible region for system (3) is defined by I1,, = II,, x IT;, with II,, and II, as specified in previous sections. Following
the standard technique [47,50], it can be easily proved that every solution of the co-infection malaria-leptospirosis model (3) with
non-negative initial conditions remain non-negative for all time ¢ > 0. Moreover, every solution on the boundary of I7,, eventually
enter its interior [66]. Thus, I1,, is positively invariant and attracts all solutions of (3) (so that, it is sufficient to study the dynamics
of the system (3) in IT,,,.

Stability of the disease-free equilibrium malaria-leptospirosis model
The malaria -leptospirosis model (3) has a disease-free equilibrium (DFE), given by

A A
€omt = (52,0,0,0,0,0,0,0,0,S*,O,S*,O,O) = <£,0,0,0,0,0,0,0,0,—q,0, —’,0,0) . 41)
q r
U Hg My
By applying the next-generation matrix approach (as described in previous selections a and a, the associated reproduction number
for the full malaria-leptospirosis model (3) (denoted by R,,) is given by
Ry,; = max{R,, Ry}, (42)

where, R, the associated reproduction number for the malaria-only model (3) given in (8) and R, the associated reproduction
number for the leptospirosis-only model (22) given in (25). Thus, the following result is established from Theorem 2 in [67].

Theorem 7. The DFE, ¢; , of the malaria-leptospirosis model (3) is locally asymptotically stable if Ry, <1 and unstable if Ry, > 1.

Biologically, the implication of Theorem 7 is that both malaria and leptospirosis infections will die out from the population over
time if Ry,, <1 and if the initial conditions of the sub-classes of the model (3) are within the basin of attraction of ¢, ,. Therefore,
individuals infected with malaria and leptospirosis do not get additional infections in the infected population.

13
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Endemic equilibrium malaria-leptospirosis model

The co-existence endemic equilibrium of the full- model (3) is denoted by
6:;1 = (S;E;‘;’ l;:,EI* I[*, l:,,, R, RT,R;I,S;, I;,Sj, lj,B*). The explicit expression for components of e::,/ in terms of model
parameters is not considered analytically due strong complexity of model equations. However, the model (3) has the following
boundary endemic equilibria if R, = max{R,,. Ry} > 1;

@ €, = (Sr. E 17,0,0,0,R:.0,0, S, 13.0,0, 0) is leptospirosis free state, where expression for S¥ , Ex, I, RY, S, and I are

n Eme e 1’7" m "m’
given in (15)—(17) and thus, the analysis of e;;“ is similar to ei*m of the model (4) described in Section “Malaria-only model”.

(ii) 6;112 = (SZZ,O, 0, E[*,I[*,O, 0, R;*,O, 0,0, Sj,lr*,B*) is malaria free state, where SZZ,EI*,II*, R;",Sj,lr* and B* are given in €Tl of
the model (22) in Section “Leptospirosis-only model” and its analysis is similar to €},. The steady states of both sub-models
are locally and globally asymptotically stable, so the full model cannot undergo backward bifurcation, as the dynamics of the
malaria-leptospirosis model are determined by those of its sub-models [50,79]. As a result, both equilibria of the model system
(3) exist, and are unique, locally, and globally asymptotically stable [77,78]. Furthermore, in Section a, we demonstrate the

numerical analysis of the existence and stability of DFE and the endemic equilibria of the full model.

Numerical simulations

In this section, simulations of the co-infection model (3) are performed to support the theoretical results of the model. This is
accomplished in MATLAB using the ode45 algorithm. The model parameters used for simulations are given in Table 1, and the initial
conditions are set as:

(S4(0), E,,(0), 1,,(0), E(0), 1,(0), 1,,/(0), R,,(0), R;(0), R,/ (0), 5,00, 1,(0), 5,(0), 1,(0), B(0)) =

(43)
(490, 60, 20, 30, 20, 10, 10, 10, 5, 1000, 200, 600, 50, 300);

the basic reproduction number is obtained as
Ry,; = max{R,,, Ry} ~ 2.8561 > 1, where, Ry, ~ 2.8561 and R, ~ 1.7229.

Stability analysis of DFE and endemic equilibria of the full-model

The plots in Figs. 2(a)-2(j) indicate that every solution of the malaria-leptospirosis co-infection model (3) converges to the unique
endemic equilibrium, €* , in the long run regarding the initial sizes of the sub-classes when R, > 1. Thus, all infected sub-classes
endure in the population. Epidemiologically, this shows that the malaria-leptospirosis co-infection will persist in the population.
On the other hand, in Figs. 3(a)-3(g), we observed that every solution trajectory of the malaria-leptospirosis co-infection model
(3) converges to ¢; , in the long run when Ry,, = max{0.7964,0.9523} = 0.9523 < 1 with §,, = 0.000315, f,, = 0.0003, 5, =
0.000002, f,, = 0.0034, 4, = 0.0034, f, = 08,7, = 0.0035,7,, = 0.00024, 4, = .4, = 0.02,¢; = 8.5 and y, = 0.07 and the other
parameter values are used in Table 1. In Figs. 3(a)-3(d) and 3(g), all solution trajectories of (3) except trajectories of S,,.S, and
S, converge to zero regardless of the initial population sizes, as t — oo. whereas (S, S, S,) — (%, ﬁ, ﬁ), as t — co as shown in
Fig. 3(f). In biological terminology, it recommends that the malaria-leptospirosis co-infection will be eradicated from the population
through time if R, = max{R,,. Ry} < 1 (if both R, and R, are less than unity).

Impact Of ﬁO’ ﬂhm! Hy on ROm

In Section “Sensitivity analysis of the malaria-only model”, we discussed the sensitivity of the parameters of R,, as well as the
impacts of the most influencing parameters (directly or indirectly influence) on the magnitude of R,,. In this section, we explore
the impacts of the most sensitive parameters, f, f,, and y, on the value of R,. The graphical results are depicted in Figs. 4 and
6. In Figs. 4, 6(a) and 6(b), it can be observed that R, increases dramatically as f, and f,, increase. In Fig. 6(a), we noticed that
Ry,, < 1 when g, < 0.58. Moreover, R, < 1 when g,,, < 0.0015 as shown in Fig. 6(b). This shows that reducing these parameter
values, as indicated by the results, will sufficiently diminish the spread of malaria infection and co-infection in the community. In
contrast, R, decreases steadily as u, increases, and Ry, < 1 when yu, > é as confirmed in Fig. 6(c). This means that reducing
the mosquito population plays a significant role in diminishing the number of malaria-infected individuals as well as the number
of malaria-leptospirosis co-infected individuals.

Impact of P, uy. €1 on Ry,

In this section, we demonstrate the impact of the most sensitive parameters f,,, y, and ¢; on R, graphically. In Figs. 5, 7(a)
and 7(b), it can be seen that R, increases as f,,, and ¢, increase. On the other hand, R, decreases steadily as u, increases, as
confirmed in Fig. 7(c). Furthermore, the value of Ry < 1 when the value of g,, < 0.00016, ¢; > 3.1, or when g, > 0.14, as shown in
Figs. 7(a)-7(c). In biological terms, leptospirosis infection and co-infection can be eliminated from the infected population if these
parameter values are less than their specified values as indicated by results.
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Fig. 2. Simulations of the model (3) showing convergence of solutions with different initial sizes of the sub-populations to the endemic equilibrium over time.
The parameter values given in Table 1 are used (so that, R, ~ 2.8561 > 1).

15



H.A. Engida and D. Fisseha

0). £,(0)] = [60,30]
0), E,(0)] = [80,50]
0), B(0)] = [100,70]|
0). Ei(0)] = [120,90]

300 —

250

200
Z 150
100

50

0
150

Scientific African 27 (2025) 02517

(a) Convergence of solutions of Ey,, (t) & E;(t) to €3,

Time(T)

with different initial values in the long term

e T
1(0)] = [10,10,5]

== [R,(0), By(0), Rypi(
=== [R,,(0), B(0), R,a(0)] = [20,20,10]

20 | =[R(0), Ri(0), R,ua(0)] = [30,30,15] L
=== (R, (0), Ry(0), Ry (0)] = [40,40,20] e

©

Convergence

initial values in the long term

of

solutions
R (t), Ri(t) & Rpu(t) to €, with different

— = = [£(0), 11(0), Zu(0)] = [20,20,10)
0), 11(0). Z,(0)] = [30,30,20
0), 1 (0), I,:(0)] = [40,40,30]
2 (0),1,(0), 1,:(0)] = [50,50,40]
",
.q. .~
N 4
N~ 2
CobRe
N by ~
=
\'); \
/ N
-] =
-~
b 100
58 80
e
> 40
= 20
& L(t)

(b) Convergence of solutions of Iy, (t),

Il(t) & Iml(t)

to €;,,,; With different initial values in the long term

of

—(1,(0), 1,(0

).

(1,0),,(0),

e [1,(0), 1,(0),
):

e 1,(0), 10

B0
B(0
B(¢
B(0

)
)
)
)]

)] = [150 50,200]
)] = [200,100,250]
)] = (250, 150,300]
)] = (300,200, 350]

.

(d) Convergence of solutions of I,(t), I-(t) & B(t) to

1400

1200

1000

Human Population size

<
8
S

Susceptible Populations size

K

— Sy A= Ni(0),

—— 5, = A/ = N,(0),

—S, = Ar/ptr, as t — oo

250

Time (Days)

0 50 100 150 200 300 350

(e) The of Dynamics of the Human

population over simulation period [0,

400]

Fig. 3. Simulations of the model (3) showing convergence of solutions with different initial values to the DFE, ¢}

u, =0.07 (so that, R,,, = max{0.7964,0.9523}

400

0 05 1

15

Time (Days)

t0 €3, in the long run

=0.9523 < 1).

16

2

25 3
x10°

(f) Convergence of solutions of suscep-

tible humans, rodents and mosquitoes

35 4

20000

18000

16000

14000

12000

10000

8000

6000

4000

All gropps of Infected Classes

€om: With different initial values in the long term

2000
\

w— =B 0, ast — o0

0.5

1

2

15 25
Time (Days)

3 35 4
x10°

(g) Convergence of solutions of all in-

fected classes to zero in the long run

Oml

over time. The parameter values given in
Table 1 are used except f, = 0.000315,4,, = 0.0003, 4, = 0.000002, f, = 0.0034, 4, = 0.0034,f, = 08,7, = 0.0035,y, = 0.00024,5, = &, 5, = 002, = 8.5 and



H.A. Engida and D. Fisseha Scientific African 27 (2025) 02517

4

5 hm oo /60

Fig. 4. Impacts of §,, and §, on R, for 0.002 < g,, <0.008, 0.5 < f, < 1.4. All other parameters are the same as those given in Table 1.

4
€1 ? Bhe

Fig. 5. Impacts of f,, and ¢, on Ry, for 0.0001 < f,, <0.0008, 2 < ¢; < 11. All other parameters are the same as those given in Table 1.

Impact of py on 1,,,1,,; and 1,

In this section, the impact of f, on populations of infectious humans with malaria, co-infected humans, and infected mosquitoes
are demonstrated in Figs. 8(a), 8(b) and 8(c), respectively. It is observed that a decrease in the values of f, will decrease the number of
malaria-infected humans, the number of co-infected humans, and the number of infected mosquitoes steadily as shown in Figs. 8(a) —
8(c). In other words, the values of g, directly influence the number of infected humans and mosquitoes in these classes. This indicates
that a control strategy of mosquito biting rate will sufficiently diminish the spread of malaria and malaria-leptospirosis co-infected
in the community. Moreover, reducing the biting rate of mosquitoes reduces the transmission rate among humans and infected
mosquitoes as well as the force of infection of humans due to infected mosquitoes. This suggests that preventive interventions,
such as insecticide-treated bed nets or indoor spraying, should be provided to prevent mosquito bites, which in turn reduce the
transmission of malaria in the community.
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I,, and (c) infected mosquitoes I,.

Impact of By, on Sy, 1,, and I,

In Fig. 9(a), it can be observed that decreasing f,, increases the size of the susceptible individuals steadily. Thus, the number
of susceptible humans getting infected in the population decreases with time. In contrast, decreasing f,,, decreases the number of
malaria-infected individuals and the number of co-infected individuals in the population as shown in Figs. 9(b) and 9(c), respectively.
This means that the malaria-infected and malaria-leptospirosis co-infected individuals can be reduced by minimizing the transmission
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rate of humans due to infected mosquitoes. Consequently, a preventive strategy that reduces the biting of mosquitoes will sufficiently
diminish the number of individuals getting infected with malaria as well as malaria-leptospirosis co-infected in the population.

Impact of u, on I,

In this section, the model system (3) is simulated to demonstrate the impact of the mortality rate of mosquitoes , on the infected
mosquito population. It is observed in Fig. 10 that infected mosquito population decreases as y, increases in values. This means that
a control strategy that increases the natural mortality rate of mosquitoes will effectively reduce the spread of malaria- infection.
Consequently, mosquito removal strategies, like insecticide spraying, should be implemented to reduce the population of infected
mosquitoes, which in turn minimizes the rate at which malaria spreads from infected mosquitoes.

Impact of ¢, and p, on Leptospira population

In Figs. 11(a) and 11(b), it is observed that the population of the pathogen in the environment decreases steadily with time
as both ¢; and y, decrease in values. Thus, reduction of the load of leptospira in the environment can be achieved by improving
the sanitation rate of the environment or maintaining clean surroundings, which in turn reduces the transmission rate of humans
due to the e contaminated environment (f,,). Consequently, the number of infectious individuals with leptospirosis and co-infected
individuals in the population diminishes.

Based on the numerical results shown in Figs. 6-11, we noticed that controlling human transmission rates (8, &p,,) and
enhancing removal rates of mosquitoes and bacterial populations can effectively decrease the spread of both diseases and their co-
infections. This suggests that interventions targeting bacterial population reduction or mosquito biting rate control will sufficiently
mitigate the spread of malaria-leptospirosis co-infection in the population. In other words, reducing the spread of mono-infections
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and malaria-leptospirosis co-infections depends on decreasing the mosquito population and improving the sanitation rate of the
environment. The effectiveness and cost-effectiveness of the suggested control measures are presented in Section a.

Optimal control analysis of the malaria-leptospirosis model

Based on the sensitivity analysis results, control measures for the parameters f, B, Bn.> and €, will help to sufficiently diminish
the spread of malaria, leptospirosis, and malaria-leptospirosis co-infection in the population. Additionally, interventions increasing
the values of y, and y, will effectively combat the spread of both diseases as well as their co-infection. In this section, we explore
the autonomous malaria-leptospirosis model (3) by integrating the time-dependent controls to identify effective and cost-effective
control strategies for eradicating malaria-leptospirosis co-infections. We incorporate controls w, (1), w,(t), @;(t) and w,(?) into (3) at
a specified time t with ¢ € [0,T] (T is the final time and its value is fixed), where w,(¢): represents malaria prevention through
the use of insecticide-treated bed nets and mosquito repellent lotion for skin) to prevent mosquito bites which in turn minimize
the transmission of malaria within a community. w,(r): denotes leptospirosis prevention by using treated water for consumption
and personal protective equipment like rubber boots, waterproof overalls, goggles, and gloves to diminish leptospirosis infections.
w3(7): represents insecticide control measures for malaria such as spraying and fogging to reduce the mosquito population, we
assumed that a proportional number of mosquitoes in each class of the mosquito population is removed with the constant control
rate of insecticide. w,(7): represents the control sanitation rate of the environment; improvements in slum areas by eliminating
trash, improving drainage, and environmental modifications (maintaining clean surroundings) to curb the growth of the Leptospira
pathogen, and the control system is given as follows:

S; () = A+ YLy + puRy + o1 R+ py Ry = [(1 = 1) Ay + (1 = 2) &) + 4] Sy,
E\ (1) = (1-)4,S), — (@, + WE,,
E/(t)= (1 —wy) 448, — (0 + WE,,
I'(t) = apEp + E01 — (p + 8+ + 7 (1 — 07) A1,
I/(dt = 0, E; + &0, — (r + 6, + p+ 1o (1 — 0y A,) 1),
IO =1(1=w) 4T, + 1o (1 =) Ay I — (0 + ) Iy,
R0 = =Orply = (0 + 1R,
R0 =y, — (o + Ry,
R0 = (1= (& +ED0Ly = (9 + 1) Ry “@4)
S = (1-aw3)A, - ((1 - wl)—ﬂqﬂO(%: )

ByPoUy + L)

Uy + 01w3)Sq,

In=(1-w) S, — (g +0103) 1,

Ny
B
S;(t)=A,—(K;B +,4r)s,
5B
1o =225, - 1,

B'(1) = (1—wy)e]; + (1= wy)ey ],y + €31, — (i + 02004)B,
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where, 4, ﬂ"”l'\fol L= +ﬂ,,,1,, subject to the initial conditions: 5,(0) > 0, E,(0) >0, E;(0) >0, I,,(0) >0, 1,(0) >0, I,,(0) >

0, R, (0) >0, R,(O) >0, le(O) 20, S,0)20, 1,(0) 20, S.(0) >0, I,(0) >0, B(0) 2 0, the coefficients ¢, and ¢,, respectively, are
the control rates of w; and w,. This work aims to reduce the number of infectious humans (malaria, leptospirosis, and co-infections),
the total mosquito population, and the bacterial population, while minimizing the associated costs of controls over a specific time
frame. Therefore, the objective functional form, O, to be minimized is given as follows:

Tf 1 4
O(wy., wy, w3, ) =/ (y1(1m+11 + L) + 92(S, + 1)+ y3B+ 3 ZZka)i> dt (45)
0 k=1

subject to the system (44), where T is the final time for optimal control implementation and a fixed value, the coefficients y,, y, and
y3 are positive weight constants for the infectious human population (7,,, I, and I,,,), total mosquito population, and the bacterial
population, respectively. The terms y,(1,,+I;+1,,), y,(S,+1,) and y; B in the integrand O indicate the benefits of infectious humans
(I,y, 1}, I,,), N,, and B. For example, selecting a high value of y, signifies that reducing the total number of infectious humans is
more important than reducing the populations of mosquitoes and bacteria [80]. Additionally, z l,zz, z3 and z, are positive weight
constants for control functions w,,®,,®; and w,, respectively. The terms %a}% %ng Zz%o and 2 co represent the cost functions
associated with the malaria prevention control, leptospirosis prevention control, insecticide control for malaria and the control
sanitation rate of the environment respectively. Unlike some previous works (e.g., [81-83]), we considered a linear function for the
cost of infections, I, I;,I,,, N,, B, and a quadratic form to represent the nonlinear costs associated with control interventions. This
is consistent with the authors of various optimal control studies (see [84-87]). Justifications for selecting these cost functions are

detailed in the previous studies (please refer, [88,89] and the references therein).

Our goal is to find an optimal control, o* = (a) a) a) co*), such that

O(a) a) a) a)4)—1nf{0(w1,a)2,a)3,a)4) W1, w,, 03,04 € O}, (46)

where, © = {(wl(t),(oz(t), w3(t),(o4(t)) :0<w () <1, t€[0,T/]} is a non-empty control set and each w(7) is Lebesgue measurable,
k=1,2,3,4.

A Hamiltonian H, of the optimal control problem based on PMP [90] is formulated as follows:

H =y,(Ly,+ I, + L) + y2(S, + 1) + y3B + 5 Zchok
k 1
! ! ! ! ! ! (47)
+ 08,0 + 0 EL O + xE[(0) + xad), (0 + x51] (@) + 61, (D) + 17 R, (1) + 13 R) ()

+ }(9R£,,](t) + }(105(;(1) + }(11[,;(’) + }(125,,(’) + X13 l,’(t) + 1B (@),

where, y, (k=1,2,...,14) are the adjoint variables corresponding to the state variables.

Existence of an optimal control

The following result is established for the existence of optimal controls that minimize the cost function O (45).

Theorem 8. Suppose the objective function O (45) is defined on the control set © subject to the optimal system (44), then there exists an

optimal control quadruple o* = (o}, »}, @5, ®}) that holds (46), provided that the following conditions given in [91] hold.

(a) The admissible control set is closed and convex,

(b) The right-hand-side expression of the control system (44) is bounded by a linear function in the state and control variables,
(c) The Lagrangian of the optimal control in (45) is convex with respect to the controls,

(d) There exist &,&, > 0 and & > 1 such that the Lagrangian is bounded below by

L%
51<2|wk |> S -&.
k=1

The proof: obviously, the control set is closed and convex by definition. Since the state and control variables have control the
state system is bounded. Also, since the integrand in the equation is a finite linear combination of the state and control functions
the integrand is convex with respect to control variables.
Theorem 9. Suppose X = Sy, Ex. Ix, E;‘,I[*,I:,],R* R* R:‘nl,S* I* S*,I*,B*) is an optimal state of the state (44) and w* =

(co w? a) o) 4) is an optimal control that holds (46), then there exist ad]omt variables;

e
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X1s X25 X35 Xas X55 X6 X7> X85 X95 X105 X115 X125 X135 X14 SAtisfying adjoint system
210 =G = 1A = @Dy + Gy = 1)1 = @) 4 + 11 s
50 = = X%, + 1o,
50 = (i = x5)a + 134,
ByPo(Ny — 1,)S,

o (e = On )
h

){4(1) =14+ 1)+ (xa —)(6)71(1 —a)z)/l, +(x10 —)(11)(1 —601)

Zg(f) =15t w+(xs — }(6)72(1 —wl)ﬂ,m - (137/1 + }(1451(1 —UJz) +y1)v
ByBo(Np — 1,))S,

> - (1451'9+J(5§29+)(9§39+)(14€2(1—w2)+Y1)’
(Np)

X6 = 160 + ) + (o = x1)(1 — @)

250 = Qg = X0 + X745

250 = (s = x1)p + xsHs (48)
290 = (Yo = X1)Pmi + Xokts
ByBoULy + L)
2100 = x1o(pg + 0103) + Crip = 211 = wl)qN# - Y2
h
BrmbPoS BumbPol
210 = 211Gty + 0103) + (1 = o)1 = ) TEEE (s = fe)ra(1 = ) THE — g,
h h
B.B
2120 = xiaky + (Grin — )(13)1(_1—]3’
X130 = U = 1)1 = )84 Sy + (s = 26)71(1 = @2)Bp Ly + X13H, = 14635
KPS, kPl xp,.S,
)= - 1 — wy)—2=h 4 - 2o)71(1 — ) —"= + - — + + 0,004) — ¥3,
2140 = Cn — )X 2)(K+ B) (g = 20)71( 2)(K+ B) (12 )(13)(K+ B X1a(py + 0204) = y3
and with final time conditions,
T =0,k=1,23,..,14. (49)
Furthermore, the controls o}, i=1,2,3,4,5 that minimizes O over © are given by
— X 2nSh + (rg — Al , 110(4, +015) + xno1d,
w} = max O,min{()(2 20 AnSh + U = 250724 ’,1} . o} =max O,min{ 1007 7 T1% s q,l} ,
Z, Zy (50)

- AS, + - Al B
@) :max{o,min{ s = 04 Sy Z(% 204 ’"1}} w) :max{O,min{ _)(14202 1}}
2 4

Proof. let X* = (S;,E I* E', I/,I" ,R:, R, R" S*,l;‘,Sr*,l;*,B*) and o* = (0], @, @5, w}) be the optimal solutions of the

me Lo B A L 12 miv 2q 2

optimal control problem. We apply the standard results given in PMP [92] to derive the adjoint state and the optimal control.
Thus, taking negatives of partial derivatives of the Hamiltonian from (47) with respect to the associated state variables, yields the
adjoint Egs. (48):

oH J0H oH oH o0H

—_— =—4'0), — =), — = -7, = =), — = —yl0,

3s, 2,® 3F, 1,(®) oF, 75(0) ol 2, oI, 50

0H 12 ()H 7 (Hi ! (Hi ’ ali ’

— ==y (D), — = — (1), — = — . (), — = — (D), —_— = 1),

ar Z6(D) iR 270 oR, 230 R, Zo(0) 25, Z10® (51)
oH p oH , oH , oH /

—_— = 1), —_— = 1), —_— = 1), —_— == 1),

a1, o, 3s, X0 or, X130 3B Yo

and with transversality conditions, y,(T) = 0,k = 1,2, ..., 14. Lastly, to derive optimal controls in the interior of the control set O,
we use an optimal condition, which is given by
oH

— =0, for wz(where k=1,2,3,4). (52)
dwy,

Solving Eq. (52) for each optimal control gives the relation which is the same as stated in (50).

Numerical simulations and cost-effectiveness analysis of optimal control problem

In this section, we use the Forward-Backward Sweep method in the MATLAB program (details in [93]) to carry out the
numerical analysis of the malaria-leptospirosis co-infection model with and without optimal controls. The aim is to demonstrate
the effectiveness of various control strategies in reducing the spread of both diseases. The parameter values used in numerical
simulations are given in Table 3. The initial conditions of the state variables are specified in (43). The simulation period in this
numerical experiment is [0,400] in units of days. The weight constant values for human, mosquito and bacterial populations are
chosen as y; = 1,y, = 1,y;3 = 0.1 respectively, while the weight constants for controls are Z; = 10, Z, = 10, Z; = 10, Z, = 15. The
insecticide rate in the mosquitoes population and the control rate of treatments in infectious humans are set as ¢o; = 0.5 [42] and
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Fig. 12. Plots showing the effects of strategy A on dynamics of the malaria-leptospirosis co-infection model (44).

0, = 0.7 [61]. To assess the effectiveness of optimal control strategies, we compare the following four strategies which are selected
based on their effectiveness.

Strategy A: Combination of w, and w3,

Strategy B: Combination of w,,®, and ws,

Strategy C: Combination of w,,®w; and w,,

Strategy D: Combination of all controls, @, ®,,®; and w,.

Case I: Optimal use of the controls w, and w;

In this case, we implement strategy A to illustrate its impact on populations of infectious humans, mosquitoes and bacteria. The
numerical results of this strategy are displayed in Figs. 12 (a) — 12 (d). Figs. 12(a) and 12(b) show a decrease in the populations of
infectious humans (7,,, I; and I,,;) and their total number compared to the scenario in the absence of the strategy. Similarly, this
strategy plays a crucial role in diminishing the total number of mosquitoes and bacterial populations as depicted in Figs. 12 (c¢) and
12 (d). Additionally, Fig. 12(e) shows the control profile for this strategy, indicating that the optimal use of the control w, remained
at its upper bound (100%) for 324 days before decreasing to the lower limit, while the optimal usage of w; was consistently at its
maximum level throughout the simulation period.

Case II: Comparison of the optimal strategies B and C

In this section, we compare the effectiveness of optimal strategies B and C in reducing the populations of infectious humans,
mosquitoes and bacteria. Their graphical results are demonstrated in Figs. 13 (a) — 13 (¢). The figures illustrate that the total number
of infectious humans (7,,,+1;+Iml), mosquitoes, and bacteria decrease more rapidly compared to the results in the absence of optimal
controls. Both strategies effectively mitigate the total number of infectious individuals and mosquito populations. Meanwhile, in
Fig. 13 (c), we observed that strategy C exhibits a higher number of pathogen removal effects from the environment compared to
strategy B. In Fig. 13(d), the control profiles of strategy B suggest that the preventive efforts for malaria and leptospirosis should
be kept at their maximum value for the first 5.7 and 324 days, respectively, and then gradually reduced to zero for the rest of the
simulation time, while the insecticide control, w3, should be sustained at its upper bound throughout the entire simulation period.
Furthermore, the control profiles of strategy C are depicted in Fig. 13(e). As shown in Fig. 13(e), the control w, should be sustained
at the maximum effort 100% for 271 days before reducing to zero for the rest of the simulation period, whereas the control w;
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Fig. 13. Plots showing the effects of strategies B & C on dynamics of the malaria-leptospirosis co-infection model (44).

should be maintained at 100% throughout the intervention period. Meanwhile, the control w, is at the maximum level for 89 days,
decreases from 100% to 35.45% during the simulation period [89,270], and then returns to 100% from [270,295], sustained this
level thereafter.

Case III: Optimal use of the all controls

In this case, we implement strategy D, which combines all optimal controls ®,,®,,®; and w, to demonstrate its impact on
populations of infected humans, mosquitoes, and bacteria. In Figs. 14(a) — 14(c), we noticed a significant reduction in the number of
infectious humans, total number of mosquitoes, and the size of the Leptospira pathogen when strategy D is implemented compared to
the results without it. The control profiles of this strategy are depicted in Fig. 14(d). It is evident from Fig. 14(d) that the controls w,
and w, maintain their maximum values for 5 and 269 days, respectively, before reducing to zero for the remainder of the simulation
period. The sanitation control rate of the environment w, is at maximum effort for 88 days, declines from 100% to 34.88% during
the simulation period [88,271], then rises back to 100% in the period [271,296], sustained this level for the rest of simulation time.
Meanwhile, the insecticide control, w; remains at its upper value throughout the entire simulation period, as confirmed in Fig. 14(d).

Case IV: Comparison of the optimal strategies A,C and D

Based on the numerical results from case 1- case 3, we compare the effectiveness of the strategies A, C and D to determine the
most effective strategy in minimizing the objective function O. The graphical illustrations can be seen in Fig. 15. It is observed
from Figs. 15(a) — 15(c) and the quantitative values in Table 5 that strategy D is the most effective in minimizing the objective
function O(a)l , 0, W3, a)4) (45). Therefore, it is recommended that public health centers prioritize the implementation of strategy D,
which incorporates four control measures to effectively manage and reduce the spread of mono-infections and malaria-leptospirosis
co-infection in the community. The efficiency analysis and cost-effectiveness of these optimal strategies will be discussed in the
subsequent sections.

Efficiency analysis

Following the works of previous studies [83,89], we perform an efficiency analysis to compare the effects of different strategies
implemented in the last section using an efficiency index, denoted by =. We define variable 4 as the area between the curve
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Fig. 14. Plots showing the effects of strategy D on dynamics of the malaria-leptospirosis co-infection model (44).
representing the infectious human, 1,(1,,, I;, I,;) population and the time over the interval [T;, = 0,7, = 400], given by
400
A =/ I, dt, (53)
0
which measures the cumulative number of infectious humans during this period. The efficiency index, =, is obtained by
(54

=c
=_(1_ "h
E= (1 :(0)> % 100,
“h

where =} and = ©) are, respectively, the accumulated number of infectious humans with and without control strategies. Thus, the
most effective strategy will be the one with the highest efficiency index value [83,89]. The efficiency index for each of the strategies
A — D is computed using the equations ((53), (54) and is given in the second column of Table 4.

Table 4 shows that strategy D is the most effective in reducing the number of infectious individuals, followed by C, A, and B,
consistent with the result obtained earlier.

Remark 1. It is important to note that A in the second column of Table 4 represents the average accumulated number of infectious humans
during the simulation period with and without control strategies and is calculated by averaging A; .4, and A; . The same method is applied
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Table 4

Table of efficiency index.
Strategy A =%
No controls 4197600 0
A 249080 94.067
B 249190 94.063
C 30980 99.261
D 30934 99.263

for Z. Notably, the efficiency index values for each strategy are particularly strong, especially for strategies C and D, as we have chosen
the four strategies based on their effectiveness among different possible strategies.

Cost-effectiveness analysis

In this section, we use the methods; average cost-effectiveness ratio (ACER) and the incremental cost-effectiveness ratio (ICER)
in the sense of [37,94,95], to identify the most cost-effective strategy in minimizing the objective function, O.
ACER of a particular intervention strategy is given by:
Total cost produced by a intervention strategy

s 55
Total number of infections averted by the strategy (55)

ACER =

where, the total cost produced by a particular intervention strategy is estimated from

1 [T (< )
TC=§/O <;Bkwk>dz (56)

and, the total number of infections averted by the strategy is estimated as the difference between the total number of infected
individuals without optimal control and the total number of infected individuals with control.

The strategy with the smallest ACER value is the most cost-effective. The ACER value for the intervention strategies is calculated
and presented in the 4th column of Table 5. Strategy A has the lowest ACER value, as indicated in Table 5. As a result, strategy
A is the most cost-effective, followed by strategies B, C, & D, respectively. While ICER involves comparing the difference between
the costs and health outcomes of any two alternative intervention strategies that are competing for the same limited resources
incrementally [96-98]. ICER value of two alternative strategies is given by:

Change in total intervention Costs
Change in the total number of infections averted

ICER = (57)
To implement the ICER, control strategies are ranked by the total number of infections averted total number as shown in Table 5.
The strategy with the highest ICER value is discarded at each step. Additionally, Figs. 16, 17, and 18 show the total number of
infections averted, the total cost of each strategy, and the average cost-effectiveness ratio. We compare intervention strategies B
and A incrementally, by calculating ICER values for the two strategies as follows:

37779 -0 3742.8 - 3777.9 (58)

ICER(B) = —————-——— =0.0009568, ICER(A)= =-0.3134.
(B) 3948584.6 — 0 #) 3948696.6 — 3948584.5

The qualitative results obtained in Eq. (58) indicate that strategy A strongly dominates B, which implies that A is less expensive
than B. As a result, strategy B is removed from the list of alternative interventions, and then strategy C is compared with strategy
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Table 5

Total infections averted, total cost, ACER.
Strategy Infection averted (x10°) Total Cost ($) ACER
B 3.9485845 3777.9 0.0009568
A 3.9486966 3742.8 0.0009479
C 4.1667972 5630 0.00135116
D 4.1668426 5665.7 0.0013597

6
1

45 x10

Infected Averted

C D

B
Strategies

Fig. 16. Total number of infections averted for each strategy.

A as follows:
3742.8 -0 5630 — 3742.8
ICER(A) = 70456066 -0 0.0009479, ICER(C)= 1166797 2 = 3948696.6 — 0.008653. (59)
Based on the calculated values obtained in Eq. (59), ICER(C) is less than ICER(A). This shows that strategy C is more costly than
Strategy A. Once again, strategy C is discarded from the list of alternative interventions. Consequently, strategy A is compared with
strategy D incrementally.
3742.8 -0 5665.7 — 3742.8
ICER(A) = 39486966 -0 — 0.0009479, ICER(D)= 1766842.6 — 39486066 — 0.008815. (60)
From Eq. (60), it is evident that ICER(D) is greater than ICER(A). This suggests that strategy A is less costly than strategy D. Thus,
we concluded that strategy A is the most cost-effective among implemented intervention strategies, consistent with the result of
the ACER approach obtained earlier. Therefore, public health centers and policymakers should prioritize implementing insecticide
control for the mosquito population and leptospirosis preventive efforts to reduce the number of malaria and leptospirosis-infected
individuals as well as malaria-leptospirosis co-infected with both diseases in the population with minimal cost.

Conclusion

In this work, we proposed and rigorously examined a new deterministic mathematical model for the dynamics of malaria-
leptospirosis co-infection transmission. We also examined the optimal control problem of the malaria-leptospirosis co-infection
model to assess the effectiveness of various time-dependent control measures in reducing the burden of both diseases and their
co-infection. We first analyzed the sub-models of the full co-infection model associated with malaria and leptospirosis separately.
The basic reproduction numbers, R,,, and R, associated with the malaria-only and leptospirosis-only sub-models were obtained by
the technique of the next-generation matrix. Based on the construction of a suitable Lyapunov functional, the disease-free equilibrium
(DFE) and endemic equilibrium of the malaria-only sub-model are globally asymptotically stable if R,,, < 1 and R,, > 1, respectively.
The existence, uniqueness, and global asymptotic stability of the endemic equilibrium of the leptospirosis-only sub-model for Ry, > 1
was demonstrated using the construction of a suitable Lyapunov functional and the center manifold theory, and the sub-model
exhibits forward bifurcation. This result is consistent with numerous studies [50,77,78]. The results of sensitivity analysis indicated
that f, f,,, and u, are the most influential parameters on the value of R, while |, §,. u, are the most influential parameters on the
value of Ry,. Based on the sub-models’ results, it has been noted that the full co-infection model has unique, globally asymptotically
stable DFE and endemic equilibria [50,77,79]. The global asymptotic stability of the model (3) was numerically analyzed using the
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ode45 algorithm. The graphical results of the stability analysis show that all solutions of the malaria-leptospirosis co-infection model
converge toward the endemic equilibrium in the long run when max{R,,,, Ry} =~ 2.8561 > 1, as depicted in Fig. 2. Conversely, when
Ry, less than one, all model trajectories converge to the DFE of the full co-infection model, as shown in Fig. 3. This demonstrates
that the co-infection of malaria-leptospirosis can be eliminated from the infected population in the long run if R, < 1, whereas
both diseases will persist if R, > 1. Moreover, the numerical results of the uncontrolled system (3) suggest that the intervention
strategies that controlling the bacterial population or reducing the biting rate of mosquitoes will sufficiently mitigate the spread
of malaria-leptospirosis co-infection in the population, see Figs. 8-11. Several studies have explored mathematical models of co-
infection between malaria and other diseases [47-52], identifying conditions for the occurrence of backward bifurcation. In this
paper, we demonstrated that backward bifurcation does not occur in the sub-models or the malaria-leptospirosis co-infection model.
Furthermore, we provided a comprehensive theoretical and numerical analysis of the global asymptotic stability of steady states of
the autonomous model.

Furthermore, we explored the optimal control model of malaria-leptospirosis co-infection (44) by incorporating four time-
varying control functions; (1), @,(t), w5(1), and w,(). The Pontryagin maximum principle was employed to establish the necessary
conditions of the optimal control problem. Numerical simulations of model (44) are carried out using an iterative method known as
the forward-backwards sweep in the MATLAB program to determine the most effective optimal strategy for minimizing the objective
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function. We observed that all implemented optimal strategies (A — D) effectively reduced the sizes of infectious human, mosquito,
and bacterial populations compared to the autonomous system, as shown in Figs. 11-13. Additionally, each strategy had the same
impact on reducing mosquito populations. However, strategy D, which implements the four optimal controls, is the most prominent
in minimizing our objective function (refer to Fig. 14(a) and Fig. 13), whereas implementing the two optimal controls, @, and w;
simultaneously (strategy A), shows to be the most cost-effective strategy. Therefore, strategy A has a significant role in reducing the
spread of malaria infection, leptospirosis infection, and their co-infection in the population, particularly when available resources
are limited.
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